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Chapter 1

General introduction

Nowadays, the search for new, better, stronger and lighter materials has become a

field of large interest, both from a scientific and an economical point of view [1-3].

Development of new and/or improved materials is considered to be essential in, for

example, semi-conductor, aircraft and space industries [3]. Such a development

requires fundamental knowledge of materials behaviour on all relevant length scales,

such as the (mis)arrangement of atoms at a nanometer scale and the orientation,

distribution and behaviour of grains and grain boundaries at the micrometer scale in

order to understand and predict the behaviour of macro-sized products [4].

The prediction of the overall (mechanical) behaviour is possible using

micromechanics [5]. A small volume, which is representative of the microstructure of

the material, is used to model and calculate the materials behaviour on a local

(mesoscopic) scale using continuum mechanics. Subsequently, the behaviour of the

representative element is used to calculate the overall materials properties. In this

respect characterization of materials through experimental techniques, such as light

microscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and

Transmission Electron Microscopy (TEM) [6], plays an essential role. These

techniques do not only contribute to the qualitative, theoretical understanding of

materials behaviour, but they also serve as tools to obtain quantitative input for

materials modelling. It is the combination of the powers of micromechanics and X-ray

diffraction for the understanding and prediction of materials properties and behaviour

that forms the incentive for this thesis.

Scope of thesis

The main part of this thesis is concerned with X-ray powder diffraction, i.e. the line

profile analysis of polycrystalline specimens for the characterization and investigation

of materials. Powder diffraction is non-destructive in nature and enables structural

information to be obtained over a moderately large (sample) volume (~1 mm3) [7]. A

powder diffraction-line profile contains a wealth of information yielding many

characteristics from the same measured data (of which); some characteristics cannot

be obtained from other analysis methods [8, 9, 10].

The positions of the line profiles enable phase and structure identification and

the determination of (macro) strain (i.e. average strain over the length scale of

diffracting crystallites). From the integrated intensities, the amount of phases present
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can be determined and preferential orientation of crystals (i.e. texture) can be

established. The analysis of the shape (broadening) of the line profiles enables the

determination of the (finite) size of the diffracting crystallites, of the presence of all

kinds of lattice imperfections that cause microstrains (i.e. strains varying over the

length scale of the diffracting crystallites), of stacking and twin faults and of

compositional inhomogeneities.

Examples of lattice imperfections causing microstrains are dislocations and

(small) misfitting particles/precipitates, see Fig. 1. These imperfections cause the

atomic lattice to be deformed, i.e. locally the atomic spacing is increased or decreased.

In the absence of such lattice imperfections (and employing a perfect measurement

instrument with a single wavelength) the XRD line profiles would resemble sharp,

delta-function like, peaks. The peak position follows directly from the use of Bragg's

law, which relates the lattice spacing to the diffraction angle(s). Hence, it is

understandable that lattice imperfections induce line broadening: small variations in

the (local) atomic spacing correspondingly cause small variations in the diffraction

angles.

Lattice imperfections have a large influence on the (mechanical and other)

properties of crystalline materials. The motion of dislocations facilitates the

deformation of crystalline materials and therefore, mechanical properties, such as the

hardness and the yield strength, are improved greatly by hindering the dislocation

motion [9]. One way to block or obstruct dislocation motion is the introduction of

small (nanometer sized), misfitting precipitates/particles in the (matrix) material.

Another way to impede dislocation motion reveals itself during (cold) deformation:

dislocations hinder each other, leading to a dramatic increase of the dislocation

density (strain hardening). Further, the presence of dislocations is important for the

recrystallisation behaviour of (deformed) materials [11].

From the above it follows that since the presence and properties of lattice

imperfections largely determine both (i) the behaviour and properties of materials and

(ii) the shift and broadening of XRD line profiles, a potential route to the direct

understanding of materials behaviour from the analysis of XRD line shift and

broadening is conceivable. Hence, it is important to establish sound relationships

between the line shift and broadening measured and the type and amounts of lattice

imperfections present.

       However, the analysis of line broadening is not straightforward [7 - 10, 13].

Within a single specimen several types of lattice imperfections may occur and cause

line broadening (structural line broadening). Moreover, the measured line broadening

is augmented by additional broadening due to the measurement instrument and the

spectral distribution of the X-rays (instrumental line broadening) [9, 10], see Fig. 1.
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Fortunately, the instrumental line broadening can be separated from the total line

broadening with the aid of a suitable reference specimen that is practically free of

lattice imperfections [9, 10].

In a line-broadening analysis the respective contributions of the sources of

structural line broadening are to be identified. With the aid of certain assumptions and

often using several orders of reflection, the structural broadening is usually separated

into a contribution due to size (the finite size of the diffracting crystallites) and a

contribution due to strain (including all microstrain sources). Examples of such size-

strain analysis methods are the Williamson-Hall analysis [14], the Warren-Averbach

analysis [9] and an alternative analysis by Van Berkum et al. [15]. Although these

types of analysis can be performed in a relatively straightforward manner and are

applicable independent of the types of lattice imperfections present, they suffer from

at least two drawbacks. Firstly, the assumptions underlying the methods are not

always verified or even correct, leading to unreliable outcomes [15], and secondly, the

interpretation of the size and strain contributions in terms of the microstructural

features (e.g. dislocations, precipitates) of the polycrystalline material considered is

very often difficult [15].

Recently a novel way of line-profile analysis has been proposed which is the

main theme of this thesis [16]. On the basis of an adequate physical/micromechanical

model of the lattice imperfections within a representative volume of the crystalline

material, XRD line profiles are calculated. The calculated line profiles are matched to

the experimental line profiles by changing (a limited number of) model parameters

that are directly related to the type and distribution of the lattice imperfections. In this

way the values of relevant physical parameters are determined directly. Evidently,

their accuracy/reliability depends upon the adequacy of the physical model.

In addition to a proper determination of the relevant physical parameters

another (fruitful) outcome of this methodology is the elimination of so-called

truncation errors. In diffraction-line broadening analysis, one practically never obtains

the full line profile due to overlap with line profiles of neighbouring reflections and

the presence of a background intensity. Each measurement of a line profile suffers

therefore from truncation both vertically (finite measurement range) and horizontally

(subtraction of background), which affects the results of all subsequent analysis [7, 9,

10, 17]. However, if an appropriate description of the structural broadening is

available and the instrumental line broadening is known, the entire diffraction-line

profile, or even the complete diffraction pattern, could be calculated and fitted at once.
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Fig. 1. Atomic representation of model materials containing misfitting particles (a) or (edge)

dislocations (b) for interpretation and generation (illustrated by the ↑ ↓ -symbols) of X-ray

diffraction-line profiles. The distortion of the lattice due to the strain fields of the lattice

imperfections cause broadening of the X-ray diffraction line profiles (structural broadening).

Examples of experimental line profiles are displayed for a VN precipitates containing α-Fe

matrix (c) (see also Chapter 4) and a cold deformed, ball milled, Mo powder (d) (see also

Chapters 5 and 6). The structural line broadenings are obtained by elimination of the line

broadenings in absence of lattice imperfections (instrumental line broadening).

(a) (b)

(c) (d)
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The outcomes of the diffraction-line profile calculation and fitting

methodology must, of course, be verified. Even in the case of just a single solution for

the model parameters, the physical relevance of the micromechanical model must be

checked. In this respect the following sources of errors should be recognised. Firstly,

the measurement of experimental line profiles is always hindered by (counting)

statistical intensity variations. Secondly, a relatively simple micromechanical model

can describe the important features of the experimental material successfully, but it

will not be capable of capturing all details.

An obvious route to check the validity of the parameters determined from

XRD is to study the same material using a different experimental technique.

Transmission Electron Microscopy serves as an excellent candidate in this respect,

since it enables a detailed study of very small volumes containing the lattice

imperfections causing broadening of X-ray diffraction-line profiles [18].

Contents of thesis

This thesis contains three parts. In the first part, chapters II and III, the novel XRD

methodology is explained and studied in full detail for the case of misfitting

particles/precipitates in a matrix. Both the broadening due to finite size effects

(chapter II) and due to microstrains (chapter III) are considered and a simple method

of separating both broadenings is proposed. The broadening due to microstrains is

studied in two steps. First the relations between model parameters, such as the particle

size, the particle fraction, the particle-matrix misfit and the distribution of particles

within the matrix, and characteristic values of the strain within the matrix, such as the

mean strain and the root mean square strain, are investigated in detail. Subsequently,

the relations between the values that characterize the matrix strains and the shift and

width of calculated line profiles are analysed.

       In the second part, chapter IV, a particle-matrix model system is studied using

Transmission Electron Microscopy to enable verification of the results of the

simulation methodology. A model system, consisting of an α-Fe matrix filled with

small, misfitting VN precipitates is studied in detail. A new method of determining

the particle-matrix misfit from TEM micrographs is proposed.

       In the last part, attention is paid to ball milling/mechanical alloying [19]. In a

ball milling device, small amounts of elementary and/or alloyed powder particles can

be deformed severely using one or more vibrating balls. The deformation process

induces large numbers of lattice imperfections, such as dislocations and grain

boudaries. In chapters V and VI the first stages of the ball milling of elementary Mo

powder in a low-impact ball milling device are studied. Special attention is devoted to



6 Chapter 1

the determination of the fractions of powder particles that remain undeformed for

relatively short milling times.
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Chapter 2

X-Ray Diffraction Line Shift and Broadening of
Precipitating Alloys

Part I: Model Description and
Study of "Size" Broadening Effects

T.C. Bor1,2, R. Delhez1, E.J. Mittemeijer1,3 and E. Van der Giessen2

1Laboratory of Materials Science, Delft University of Technology,

Rotterdamseweg 137, 2628 AL Delft, The Netherlands
2Koiter Institute Delft, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands
3Max Planck Institute for Metals Research,

Seestraße 92, 70174 Stuttgart, Germany

Abstract

A new diffraction-line profile simulation approach is presented that is based on a

micromechanical model of the crystalline material considered. It uses the kinematical theory

of diffraction and is, in principle, valid for any three-dimensional crystal. The approach is

demonstrated for a two-dimensional model material containing a periodic distribution of

equal sized, circular, non-diffracting, misfitting particles. In this first paper, the line shift and

broadening in absence of misfit between particles and matrix is studied in detail with an

emphasis on the role of the particle fraction, the particle size and the particle clustering on

the line profile position and width. Further, the separation of broadening due to "size" and

"strain" effects is discussed.

1. Introduction

Precipitation in alloys can induce pronounced mechanical strengthening. The volume

misfit of the precipitate particles with the matrix is associated with the introduction of

strain fields surrounding the precipitate particles which can hinder dislocation

movement and thus enhance the mechanical strength [1]. To understand material

behaviour it is of crucial importance to establish which are the key parameters of the

strain distribution in the material considered and to determine their values

experimentally.
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X-ray diffraction is one of the few methods enabling the non-destructive and

quantitative measurement of macroscopic strains, i.e. strains which are constant on the

length scale of a grain in the specimen, as well as microscopic strains, i.e. strains

which are varying over atomic distances. A macroscopic strain is observed as a shift

of a diffraction-line profile from its strain-free position and microscopic strains are

observed through broadening of the diffraction-line profile. The interpretation of this

diffraction-line broadening in terms of local strain fields, however, is not

straightforward [2] since diffraction-line broadening can be caused also by, for

instance, the finite size of the diffracting crystals (size broadening). Until now,

methods used for line-profile decomposition (i.e. separation of the "size and strain

broadened" parts) rely on specific assumptions made for the order dependences of

"size" and "strain" broadenings, leading to "size" and "strain" parameters that are

difficult to interpret [2 - 4].

Recently, a different approach has been proposed: line-profile simulation on

the basis of an appropriate model for the occurring strain field [4]. Such line profiles

can be matched with experimental ones, thereby determining values for strain-field

parameters that can be interpreted easily. Earlier treatments (e.g. [5 - 8]) for the effect

of misfitting particles on line broadening are based on a description of the particle

induced misfit-strain field in the matrix according to a formalism originally presented

by Eshelby [9] for misfitting point defects. In this way, the influence on the simulated

line profiles of the particle-matrix misfit and the particle volume fraction could be

modelled quite readily. However, these simulations pertain to randomly distributed

particles within a matrix for which the interaction of the strain fields due to the

individual particles is accounted for in an approximate way. To eliminate these

limitations and to accurately calculate the displacement and the strain field within a

material containing misfitting particles a micromechanical description is adopted here.

The power of the proposed methodology can be well demonstrated by considering an

infinitely large two-dimensional model system of misfitting, circular particles

distributed in a matrix. It will be shown here that the results obtained for this simple

system already have a direct bearing on the diffraction line shift and broadening

observed in practice.

In this first paper a full description of this new approach is given. It is applied

to various cases of particles in a matrix. In the absence of particle-matrix misfit, the

so-called size broadening is analysed. In the presence of particle-matrix misfit, the

way how to separate size and strain broadening effects is discussed. In the second

paper the occuring strain broadening is analysed in detail.
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2. The line-profile simulation model

2.1 The strain field of the particle-arrangement unit cell

Although the approach is quite general, it will be demonstrated for a two-dimensional

model material. For convenience, the second-phase particles considered have a

circular shape and are distributed periodically in an infinitely large crystal (the

matrix). The particles exhibit a certain volume misfit with respect to the matrix. Such

a misfit can be due to differences in specific volume of atoms of the constituting

elements upon precipitation and/or can arise due to different thermal expansion

coefficients of matrix and particles during cooling of the material from the processing,

precipitation temperature to room temperature. It is assumed that all misfit is

accommodated elastically.

Due to the particle ordering, a unit cell can be defined such that its

deformation due to the precipitates fully charaterizes the entire particle-matrix

composite. This unit cell will be called "particle arrangement unit cell" or p.a.-unit

cell. A schematic drawing of the (primitive) p.a.-unit cell considered here as an

example is given in Fig. 1. The particle with radius Rp is placed in the center of a

square matrix of size 2L ×  2L at the origin of a Cartesian coordinate system with the

x and y-axes parallel to the sides of the p.a.-unit cell. The particle area fraction c is

defined as c R Lp= π 2 24 . Each phase exhibits linear elastic behaviour and is assumed

to possess isotropic elastic properties: Young's moduli Em ("m" denotes matrix) and Ep

("p" denotes particle) and Poisson ratios νm and νp. The particle-matrix misfit is

characterized by the linear misfit parameter ε.

The displacement field and the corresponding strain field are calculated from

the governing elasticity equations, assuming plane strain in the out-of-plane direction.

Since the p.a.-unit cell exhibits mirror symmetry about the lines x = 0 and y = 0, the

displacement and strain fields need only be calculated in a quarter of the p.a.-unit cell.

The boundary conditions required to solve the elasticity problem are implied by the

periodic arrangement of p.a.-unit cells and the symmetry properties of the p.a.-unit

cell. Denoting the displacements parallel to the x-axis and the y-axis by u and v,

respectively, and with τ as the in-plane shear stress, the boundary conditions can be

written as

u y v x u L y U v x L V

y x L y x L

( , ) , ( , ) , ( , ) , ( , ) ;

( , ) ( , ) ( , ) ( , ) .

0 0 0 0

0 0 0

= = = =

= = = =

   

τ τ τ τ
(1)
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x

y

U

V

Rp

L

L

The cell boundary displacements U and V are determined such that the average

normal stresses at the p.a.-unit cell boundaries in the x-direction and the y-direction

vanish in order to maintain a globally stress-free state. Because of the symmetry and

elastic isotropy of matrix and particle, the p.a.-unit cell will only exhibit overall

dilation, i.e. U = V.

No closed-form analytical solution exists for this elastic problem and therefore

the solution is obtained numerically using a finite element method [10]. This solution

is accurate to a desired level of accuracy by choosing a sufficiently fine mesh of

elements. In this work this mesh is constructed from approximately 35 ×  35 four

noded elements, somewhat depending on the particle fraction c. The size of the

Fig. 1. Schematic drawing of the square p.a.-unit cell of size 2 2L L×  containing a

single centered particle of radius Rp at the origin of the x-y-coordinate system. The

overall expansion of the p.a.-unit cell in x- and y-direction is denoted by U and V,

respectively. Due to symmetry properties of this p.a.-unit cell the displacement and

strain fields are calculated only for a quarter of the cell. The type of mesh is shown,

but the actual mesh used contains many more elements.
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x
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V

2L

2L
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Lp

pR

elements in the neighbourhood of the particle-matrix interface is intentionally reduced

to capture the relatively steep strain gradient (cf. Fig. 1).

The displacement and strain fields computed in this way duely account for

"interaction" of the particles. Obviously, the displacement field reflects the periodicity

of the particle distribution. Hence, the displacement and strain field are distinctly

anisotropic.

To study the influence of non-periodic distributions of second-phase particles,

local deviations of the periodic distribution of particles are considered: a p.a.-unit cell

is taken which contains four identical particles that are clustered near the origin and

located on the cell diagonals (see Fig. 2). The size of the p.a.-unit cell now is 4L ×
4L; the distance between neighbouring circular particles in the p.a.-unit cell is equal to

2Lp. The degree of clustering can be denoted by the dimensionless cluster factor Cf =

1– Lp /L. If Cf = 0, there is no clustering and the cell is equivalent to the p.a.-unit cell

of Fig. 1. If Cf = 1, the four particles in the p.a.-unit cell overlap fully at x = y = 0. If

Fig. 2. Schematic drawing of square p.a.-unit cell of size 4 4L L×  containing four

clustered particles of equal radius Rp located at (±Lp, ±Lp). See also caption of Fig. 1.
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the particles touch but do not overlap, the utmost clustered state is reached when Lp =

Rp; then C cf
max = −1 2 π . This large p.a.-unit cell shows the same symmetry as the

small p.a.-unit cell of Fig. 1 and therefore the displacement field and strain field

calculations can again be restricted to a quarter of this cell.

 Since the displacement field and the strain field in matrix and particle are

calculated using linear continuum elasticity, they do not have the sizes of the p.a.-unit

cell and of the particle as independent variables: the displacements and the strains are

fully characterized by their ratio Rp/L or by the particle fraction c. Physically this

means that no length scale related to, for example, the atomic distance is introduced.

2.2 Method of line-profile calculation

2.2.1 Sampling of displacement field

The p.a.-unit cell is filled with a square array of 2 2N N×  atoms divided over matrix

and particle such that the filled p.a.-unit cell is symmetric about the lines x = 0, y = 0

and x = |y| as shown schematicly in Fig. 3a. This 2D array can be described by vectors

a1 and a2 that are related to the vectors describing the p.a.-unit cell, ~a1  and ~a2 , by

ii Na=a 2~  (i = 1, 2).  The atomic distance is a a1 2= = a . Note that ai, and thus ia~ ,

change in proportion to the overall dilatation of the p.a.-unit cell in the strained

condition. The radius of the misfitting particle can also be expressed as an integer

number of atoms, NR, as NR = mod(Rp/a).

The continuous displacement field, as calculated according to Section 2.1, is

sampled at the original, reference positions of the atoms, rendering the displacement

of the atoms from their reference position. The values of the atomic displacements are

obtained by bilinear interpolation between the displacements of the four nodes

forming the element in which a particular atom is located [10]; see Appendix A.

2.2.2 Intensity distribution of a single crystal

According to the kinematical theory of diffraction, the {hk} intensity distribution of a

single (here two-dimensional) crystal in reciprocal space is given by [11]

I h k F h k F h k G h k G h k( , ) ( , ) ( , ) ( , ) ( , )* *= (2)

where I(h,k) is expressed in electron units, F(h,k) denotes the structure factor, G(h,k)

represents the crystal factor, and "*" indicates the complex conjugate. The structure



X-Ray Diffraction Line Shift and Broadening of Precipitating Alloys; Part I 13

factor F(h,k) comprises the contribution to the scattering amplitude of all atoms within

a single unit cell; the crystal factor G(h,k) accounts for the spatial distribution of all

unit cells making up the crystal.

If the vector rmn indicates the position of an atom (m,n) with respect to the

origin of the p.a.-unit cell (see Fig. 3) and fmn is its scattering factor, then the structure

factor of a p.a.-unit cell containing 2 2N N×  atoms is given by

F h k f emn
i

n

N

m

N
mn(

~
,
~

) = ⋅

=

−

=

−
∑∑ 2

0

2 1

0

2 1
π H r (3)

Fig. 3a. The (p,q) particle arrangement unit cell defined by ~a1  and ~a2  positioned in

global space by Rpq . The p.a.-unit cell contains 2 2 6 6N N× = ×  atoms and a single

circular particle at the origin of an x-y-coordinate system. In the p.a.-unit cell one

matrix unit cell defined by a1 and a2 has been indicated and an example of rmn  for

m = 5 and n = 4 is shown.

Rpq

a1

~a1

a2

~a2

r54

(2N–1,0)

(2N–1,2N–1)

(0,2N–1)

0

x

y
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Fig. 3b. Representation of the reciprocal space pertaining to the p.a.-unit cell, defined

by reciprocal vectors 
~
b1  and ~

b2  (cf. Fig. 3a). The dashed square section surrounding

the (1,1) matrix reflection (
~

,
~

)h N k NB B= =2 2  is taken to comprise the intensity

distribution of the (1,1) matrix reflection. Reciprocal lattice vectors of the matrix unit

cell description, b1 and b2, are indicated.

Here, the diffraction vector H b b= +~~ ~~
h k1 2  is expressed in terms of real-valued

variables ~
h and ~

k , and reciprocal lattice vectors ~
b j , that are associated with ~ai

according to ~ ~
a b ji ij⋅ = δ , with δij  the Kronecker delta. The "~" symbol is used to mark

all variables directly related to p.a.-unit cell vectors ~a1  and ~a2 .

Each vector rmn is expressed in terms of components along ~a1  and ~a2  by

means of fractional coordinates ~
X mn  and ~

Ymn  ( − ≤ ≤1
2

1
2

~ ~X Ymn mn,  ), i.e.

r a a1 2mn mn mnX Y= +~ ~ ~ ~ . In the deformed state, |a~ |1  and |a~ |2  are equal to the sum of the

strain-free length, 2L = 2Na, and the p.a.-unit cell dilatations 2U and 2V, respectively;

cf. Fig. 1 (here U = V; see below Eq. (1)). The atom (m,n) is displaced from its strain-

free reference position ([ ] ,[ ] )m N a n N a+ − + −1
2

1
2  (cf. Fig. 3a) 1  by a

displacement (umn,vmn). Thus,

                                                          
1 Note that the indices m and n start at the lower left corner of the p.a.-unit cell (with m = n = 0). The
choice of the position of the origin within the p.a.-unit cell is inconsequential for the corresponding
intensity distribution in reciprocal space.

~
b1

b1

(1,0)

~
b2

b2

(0,1)

(1,1)

(2N,2N)

(N,N)

(3N,3N)
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  ~ ( )
, ~ ( )

X
m N a u

Na U
Y

n N a v
Na Vmn

mn
mn

mn=
+ − +

+
=

+ − +
+

1
2

1
2

2 2 2 2
. (4)

The crystal factor G h k(
~

,
~

)  is defined as

G h k e i

qp

pq(
~

,
~

) = ⋅∑∑ 2π H R (5)

with R a apq 1 2= +p q~ ~  the vector indicating the position of the (p,q) unit cell with

respect to a global origin (see Fig. 3a). Two limiting cases for the crystal size can be

considered for G h k(
~

,
~

) . Firstly, consider an imaginary, small crystal consisting of one

p.a.-unit cell only. Then, it follows that G h k G h k(
~

,
~

) (
~

,
~

)* = 1 and the intensity

distribution in reciprocal space of the imaginary small crystal, I h k(
~

,
~

) , equals

F h k F h k(
~

,
~

) (
~

,
~

)*  and is continous in ~
h and ~

k  (cf. Eqs. (2) and (3)). Secondly,

consider the infinitely large crystal studied so far, consisting of an infinite number of

p.a.-unit cells that are exactly equal (i.e. there is no microstrain among the p.a.-unit

cells; only within a p.a.-unit cell microstrain occurs). For this crystal it follows from

Eq. (5) that G h k(
~

,
~

)  has only non-zero values for integer values of ~
h and ~

k . Then, the

intensity distribution of the infinitely large crystal follows from sampling the intensity

distribution of the imaginary small crystal at integer values of ~
h  and ~

k  (cf. Eqs. (2)

and (3)). Hence, each (
~~

)h k  line profile is a line intensity and the distribution of

intensity in reciprocal space is not continuous but discrete.

The same particle-matrix system can also be described in terms of a matrix
unit cell, containing one atom at its center and defined by the vectors a1 and a2, as
indicated in Fig. 3a. The corresponding reciprocal matrix lattice vectors, b1 and b2, are
defined in the usual way and the diffraction vector H can be expressed as, H =
hb1+kb2, with the real-valued variables h and k (see below Eq. (3)). Since
H b b b b1 2 1 2= + = +h k h k

~~ ~~  and ~a ai = 2N i , it follows ~
h Nh= 2  and ~

k Nk= 2 . Hence,
the {h,k} line intensity in terms of the matrix unit cell description is the (2Nh,2Nk)
line intensity in terms of the p.a.-unit cell description (cf. Fig. 3b). The periodic
arrangement of particles causes the presence of {

~
,
~

}h k  satellites at both sides of the
{h,k} reflections2.

Now, consider the presence of a microstrain field so that the matrix unit cells

are strained differently. The p.a.-unit cells remain identical (see above) and again
                                                          
2 Since ~ai  depends on the state of deformation it follows for a given reflection {

~
,

~
}h k , with 

~
h and 

~
k

integers, that |H|, with H b b= +~~ ~~
h k1 2  and 

~ ~b ai i= 1 , also depends on the overall state of

deformation.
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G h k(
~

,
~

)  has only non zero values for integer values of 
~
h  and 

~
k ; however, F h k(

~
,
~

)

changes. Now, by the introduction of microstrains the {hk} line profile does not

broaden in the usual sense: the "broadened" {hk} line profile is made up by a series of

{
~~

}h k  line intensities around the position of the ideal {hk} line intensity, due to the

periodicity of the misfitting particle distribution. Therefore, in this work the {hk}-

reflection is described by all {
~~

}h k  line intensities within a square section of reciprocal

space, in accordance with the symmetry of the reciprocal lattice. Using a subscript "B"

to denote the values of h, k, 
~
h  and 

~
k  at a Bragg position according to the matrix unit

cell description, this section is bounded by hB–1/2 < h < hB+1/2 and kB–1/2 < k <

kB+1/2 in terms of the matrix unit cell description or by 2(hB–1/2)N < ~
h  < 2(hB+1/2)N

and 2(kB–1/2)N < ~
k  < 2(kB+1/2)N in terms of the p.a.-unit cell description.

2.2.3 Intensity distribution of a polycrystalline powder; sampling in reciprocal space

Consider a powder composed of "infinitely large" powder particles, each of which is

identical to the infinitely large single crystal considered above. The orientation

distribution of the powder particles is assumed to be perfectly random. Then, the

intensity of the {hk} powder diffraction-line profile at a specified length of the

diffraction vector, |H|, can be obtained from the intensity distribution in reciprocal

space for a single crystal as considered above, through integration along a circle with

radius equal to |H| (for the case of 3D crystals, see Ref. 11) as illustrated in Fig. 4. The

full {hk} powder diffraction-line profile is obtained by repeating this procedure for an

appropriate range of diffraction vector lengths. This sampling procedure will be

referred to as the "rotation procedure".

In powder-diffraction analysis usually the so-called "tangent plane

approximation" is applied [11, 12]. In this case, the intensity distribution for a powder

is obtained from the intensity distribution for the single crystal through integration in

reciprocal space along a line perpendicular to HB, at a specified length of the

diffraction vector, |H| (cf. Fig. 4). The full {hk} powder diffraction-line profile is then

obtained by repeating this procedure for an appropriate range of diffraction vector

lengths. This sampling procedure will be referred to as the "tangent procedure".

2.2.4 Computing time considerations

It follows from Eqs. (2) and (3) that the number of steps in a straightforward

calculation of the intensity distribution of an {hk}-matrix line profile is dependent on

the square of the number of atoms in the p.a.-unit cell: (i) each {
~~

}h k  intensity requires
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the summation of the contribution of all atoms within the p.a.-unit cell (= 4N2) and (ii)

each square section of reciprocal space to be considered for an {hk} matrix line profile

(cf. Section 2.2.2) consists of 4N2 {
~~

}h k  line intensities (cf. Fig. 4b). However, based

on a Fast Fourier Transform and a special reformulation of the displacement field, a

fast method of calculation has been developed (see Appendix B), with a computation

time that is roughly linearly dependent on the number of atoms in the p.a.-unit cell.

Fig. 4. Comparison of two procedures to obtain a powder diffraction-line profile from

the intensity distribution in reciprocal space of an "infinitely large" single powder

particle. (i) The rotation procedure is represented by the solid arcs that depict parts

of the circles through all line intensities at equal distance to the origin of reciprocal

space. (ii) The tangent procedure is represented by the dashed lines. All line

intensities located at the dashed lines perpendicular to the diffraction vector HB are

projected onto the diffraction vector at the same distance from the origin of reciprocal

space.

2.3 Characterization of line profiles

As demonstrated in Section 2.2.2 the {hk} powder diffraction line profile consists of a

series of line intensities. The {hk} line profile will be characterized by its centroid

Hc
hk , as a measure of profile position, and its standard deviation S hk , as a measure of

profile width. The centroid of an {hk} powder diffraction-line profile is obtained from

~
b1

~
b2

HB

B

A1

A2

C2

C1

Cr

Ct

At
Ar

HC

HA

∆H
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H
h k I h k

I h k
c
hk kh

kh

=
∑∑

∑∑

| (
~

,
~

)| (
~

,
~

)

(
~

,
~

)

~~

~~

H
(6)

where the summations over 
~
h and 

~
k  are limited to these reflections of the p.a.-unit

cell that contribute to the {hk} reflection (see Section 2.2.2) and with | (
~

,
~

)|H h k  as the

distance from the origin of reciprocal space to a specific {
~~

}h k  line intensity after

projection onto the diffraction vector by either the tangent procedure or the rotation

procedure (cf. Fig. 4). The standard deviation of the {hk} diffraction-line profile

equals the square root of its variance, S Varhk hk= . The latter is defined with respect

to the centroid position Hc
hk  as

Var
h k H I h k

I h k
hk

c
hk

kh

kh

=
−∑∑

∑∑

(| (
~

,
~

)| ) (
~

,
~

)

(
~

,
~

)

~~

~~

H 2

. (7)

3. The interpretation of "size broadening"

3.1 Introduction

Even in the absence of misfit at the particle-matrix interfaces (ε = 0), broadening of

{hk} line profiles occurs, if the particles do not contribute to the diffraction process,

i.e. fmn = 0 for a particle atom and fmn = 1 for a matrix atom (see Eq. (3)). This type of

broadening is not always recognized for precipitating systems. It is due to finite

distances within the matrix between the particles; it is order independent and called

"size"-broadening; it should not be confused with the usual "size" broadening due to

the finite, outer size of the matrix.

3.2 Centroid and variance; numerical results

The centroid and the variance of a {10}-reflection, Hc
10  and Var10 , respectively, are

plotted in Figs. 5a and b as a function of c/(1–c) for different particle radii, Rp = NRa,

for the unclustered state (and obviously with ε = 0) and with a = 1. Both the shift of

the centroid and the variance increase with c/(1-c) at constant 2NR and decrease with

increasing particle size 2NR at constant c/(1-c).
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1.0000

0.9995

0.60.40.20.0
c/(1-c)

2NR = 20

2NR = 40

2NR = 80

tangent
procedure

Fig. 5a. Centroids of size broadened {10} line profiles as a function of particle

fraction c/(1-c) for particle size 2NR = 20, 40 and 80 ( 2 2N N×  is changed

correspondingly). Solid lines represent results of rotation procedure to obtain {10}

powder diffraction-line profile and dashed lines represent results of tangent

procedure.

3x10
-3

 

2

1

0

Var
hk

0.60.40.20.0
c/(1-c)

2NR = 20

2NR = 40

2NR = 80

Fig. 5b. Variances of size broadened {10} line profiles as a function of particle

fraction c/(1-c) for particle size 2NR = 20, 40 and 80 ( 2 2N N×  is changed

correspondingly). Solid lines represent results of rotation procedure to obtain {10}

powder diffraction-line profile and dashed lines represent results of tangent

procedure.

Hc
hk
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The influence of the type of sampling in reciprocal space is only distinct for

the centroid shift: line profiles obtained using the tangent procedure exhibit even no

centroid shift at all, contrary to those obtained using the exact, rotation procedure. The

observation of an, albeit very small, centroid shift in a case of pure "size broadening"

is counter-intuitive. In fact, the line shift observed for the exact sampling procedure is

physically genuine, but it is entirely due to the way the powder diffraction

measurement is performed in practice, as described by the exact sampling (of

reciprocal space) procedure. This can be shown with the aid of Fig. 4 as follows.

In Fig. 4 a Bragg reflection is considered with a maximum denoted by B, along

with equal intensities symmetrically placed around B (belonging to the reflection

considered): A1, A2, C1 and C2. The powder diffraction measurement implies

projection on the diffraction vector H (of variable length but fixed position; cf.

Section 2.2.3). In the approximate, tangent procedure, the intensities A1 and A2 are

projected onto the diffraction vector at At; the intensities C1 and C2 are projected onto

Ct. The distance from At to B equals the distance from Ct to B, so that the powder

diffraction-line profile is symmetric with respect to B also after projection. However,

using the exact, rotation procedure, the line intensities A1 and A2 are projected on the

diffraction vector according to radius |HA| and the intensities C1 and C2 are projected

according to radius |HC|. As a consequence, the distance from B to the projected line

intensities Ar is smaller than to Cr, so that the powder diffraction-line profile according

to the rotation procedure is asymmetric. Apparently, in Fig. 5a a positive centroid shift

(towards higher |H|) occurs. Detailed analysis reveals that this shift is proportional to

the variance of the powder-diffraction line profile; see Appendix C.

The variance of the profiles is not significantly affected by the sampling

procedure in reciprocal space and is a clear indication of the "size broadening", as is

discussed next.

3.3 Relation between particle fraction and line width

The shape of the intensity distribution is largely determined by the shape and size of

the particle. This follows from the calculation of the structure factor of the p.a.-unit

cell (cf. Eq. (3)) when applying Babinet’s principle [13]. Consider the p.a.-unit cell

depicted in Fig. 3a containing an array of atoms divided over matrix and particle. For

the structure factor F h k(
~

,
~

) , the sum over the matrix atoms can be written as the sum

over the matrix and particle atoms in the p.a.-unit cell minus the sum over the particle

atoms. If the scattering factors of matrix and hypothetical particle atoms are taken

equal, the sum over all matrix and particle atoms yields the structure factor of a

particle free, p.a.-unit cell, further denoted by Fpf, and the sum over all particle atoms
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yields the structure factor of a p.a.-unit cell containing a hypothetical diffracting

particle of matrix material only, denoted by Fp. Thus

          F h k f e F F e emn
i

n

N

m

N

pf p
i

n

N
i

particlem

N
mn mn mn(

~
,
~

) = = − = −⋅

=

−

=

−
⋅

=

−
⋅

=

−
∑∑ ∑ ∑∑∑2

0

2 1

0

2 1
2

0

2 1
2

0

2 1
π π πH r H r H r (8)

It can be shown that Fpf equals zero at every position in reciprocal space except for the

Bragg positions of the matrix according to the matrix unit cell description if the crystal

consists of an infinite number of p.a.-unit cells, F h k Npf B B( , ) = 4 2  (for fmn = 1). Thus

at non-Bragg positions in reciprocal space, F h k F h kp(
~

,
~

) (
~

,
~

)= .

Calculation of I h k(
~

,
~

)  for an infinitely large single crystal composed of

identical p.a.-unit cells at integer values of 
~
h  and 

~
k  (see Section 2.2.2) by

multiplication of F h k(
~

,
~

)  with its complex conjugate yields intensity at non-Bragg

positions from the product F F I h kp p p
* (

~
,
~

)=  only. Hence the intensity distribution at

non-Bragg positions is equal to the intensity distribution that would have been

obtained if only atoms of the hypothetical particle of matrix material had diffracted.

The shape of the intensity distribution at non-Bragg positions is thus determined by

the size and shape of the particle. At the Bragg position (hB,kB) the intensity equals the

square of the number of matrix atoms, I h k N N NB B p m( , ) ( )= − =4 2 2 2   for fmn =  1

and with Nm as the number of matrix atoms and Np as the number of atoms per

particle. On this basis, the dependence of the variance on particle fraction c can be

understood as follows.

The calculation of the variance according to Eq. (7) indicates that {
~~

}h k  line

intensities are sampled in reciprocal space at (
~~

)h k  positions defined by the size and

number of atoms of the p.a.-unit cell. If the density of these sampling locations is

sufficiently large (i.e. 
~ ~
b b1 2 1 2= = N  is sufficiently small), Eq. (7) can be replaced

by:

Var

h k H I h k dhdk

I h k dhdk
hk

c
hk

kh

kh

=
−∫∫

∫∫

(| (
~

,
~

)| ) (
~

,
~

)
~ ~

(
~

,
~

)
~ ~

~~

~~

H 2

(9)

with 
~
h  and 

~
k  now as real-valued variables. Then the following approximations can

be made. First, the factor I h k(
~

,
~

)  in the numerator on the right hand side of Eq. (9)

can be replaced by I h kp (
~

,
~

)  away from the Bragg position (hB,kB) since at and near
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the Bragg position (| (
~

,
~

)| )H h k Hc
hk− 2  is very small. Similarly, the denominator of the

right hand side of Eq. (9) can be rewritten as

I h k dh dk I h k dh dk I h k I h k
kh

p
k

p B B B B
h

(
~

,
~

)
~ ~

(
~

,
~

)
~ ~

( , ) ( , )
~~ ~~
∫∫ ∫∫= − + . (10)

Obviously, I h k dh dk Np
k

p
h

(
~

,
~

)
~ ~

~~
∫∫ = , with Np the number of atoms per particle (e.g.

Ref. 11)3. Further, I h k N N cp B B p(
~

,
~

) ( )= =2 2 24  and I h k N N cB B m(
~

,
~

) ( ( ))= = −2 2 24 1

(see above discussion). Substitution of all this in Eq. (10) leads to

Var
N

c
c

h k H I h k dh dkhk

p
c
hk

p
kh

=
−

−∫∫
1

1
2(| (

~
,
~

)| ) (
~

,
~

)
~ ~

~~
H . (11)

At constant particle size, and thus constant Np, I h kp (
~

,
~

)  is constant and then Var hk  is

approximately proportional to c/(1–c), as indeed observed in Fig. 5b. Hence,

recognizing that S Varhk hk=  and for c << 1, the line width is proportional to square

root of the particle fraction c.

3.4 Relation between particle number density and line width; variance-range

plots

A change of 2N and thereby the p.a.-unit cell size 2L = 2Na can be interpreted as a

change of the size and the number density of precipitate particles p, with

p N= 1 4 2( ) . As pointed out in Section 3.1, "size broadening" of matrix reflections is

due to the presence of non-diffracting parts (the particles) in this matrix. According to

[11], the size of the diffracting crystallite leads to line broadening that is inversely

proportional to that size. A possible "size parameter" in the present case is the inter

particle distance, which is proportional to 2N at constant particle fraction. However, it

follows from Fig. 6a that a plot of Shk vs 1/2N does not yield a straight line. Rather Shk

appears to be proportional to 1 2N  according to Fig. 6b. These phenomena can be

explained as follows.

Variance-range plots can be used to characterize line broadening [14-16]. Let s

denote the distance along H to the origin (e.g. the centroid/maximum) of the powder

diffraction line profile. Starting at the origin (s = 0) the variance is calculated for

                                                          
3 Np is related to NR (see Section 2.2.1) by N Np R≈ π 2 . Note that both Np and NR are integer.
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Fig. 6a. Standard deviation of size broadened {10} line profile as a function of the

reciprocal of the size of the p.a.-unit cell, 2N,  for c = 0.0123, 0.0873 and 0.196.
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Fig. 6b. Standard deviation of size broadened {10} line profile as a function of the

reciprocal of the square root of the size of the p.a.-unit cell, 2N,  for c = 0.0123,

0.0873 and 0.196.
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increasing lengths of the range –s1 to s2 on either side of the peak maximum (cf. Eqs.

(7) and (9)). Examples of such plots are given in Fig. 7 for the {10} diffraction line

profile for a p.a.-unit cell with c = 0.087 and NR = 20, 40 or 80, respectively,

corresponding to 2 2N N× =120 120× , 240 240×  or 480 480× , respectively.

Clearly, apart from very close to the origin (s↓0), the variance scales linearly with s =

s1 + s2 over a considerable range of values4. This reflects the recognition that in case

of "size broadening" the tails of a profile fall off inversely proportional to s2 [14-16].

The slope of this linear part of the plot, C, is a measure for "size".

25x10
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Fig. 7. Variance-range plots for {10} diffraction line profile of a p.a.-unit cell

containing one misfitting particle with c = 0.087 and Ep/Em = 1 for various particle

sizes: NR = 20, 40 or 80, respectively, corresponding to 2 2N N×  = 120 120× ,

240 240×  or 480 480× , respectively. The centroid of the diffraction line profile

corresponds with s = 0 and the range is taken symmetrical with respect to the

centroid.

Now consider, at constant c, a p.a. unit cell of size 2N1 and one of size

2N2 = α2N1. Because all dimensions of the matrix (including the interparticle

distance) scale with 2N and the width of the size broadening in reciprocal space is

                                                          
4  At the end of the range the intensity distributions of neighbouring reflections overlap. Consequently,
the intensity distribution does not fall off inversely proportional to s2 in this region and the linear
character of the variance-range diagram is disturbed.

NR = 20

NR = 40

NR = 80
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proportional with 1/2N [11], one can write I s I sN N2 21 2
( ) ( )α =  with I the intensity

distribution along H. Thus

          

Var

s I s ds

I s ds

s I s ds

I s ds

s I s d s

I s d s

C s s C s s

N
hk

N
s

s

N
s

s

N
s

s

N
s

s

N
s

s

N
s

s2

2
2

2

2
2

2

2
2

2

1 2 1 2

2

2

1

2

2

1

2

1

1

2

1

1

2

1

1

2

1

1

2

1 1

= = ≅

≅ + = + =

−

−

−

−

−

−

∫

∫

∫

∫

∫

∫

( )

( )

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

  =
1

           
1

2

2

α

α
α

α α α

α α

α
α α

α

α

α

α

α

α
Var N

hk
2 1

(12)

Here the approximation ( )I s d s I s d sN
s

s

N
s

s

2 22

1

2

2
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2

( ) ( ) ( )α α α α
α

α

− −
∫ ∫≅  has been applied, which

is justified when the tails of the intensity distribution have a negligible contribution to

the integrated intensity. It immediately follows from Eq. (12) that S Varhk hk ( )=  is

inversely proportional to 2N , as observed (Fig. 6). Hence the line width is

proportional to (p)1/4.

The reason for Shk being related inversely proportional to 2N  instead of 2N

is a direct consequence of the variance being defined to include all line intensities of

the {hk} reflection (see Eqs. 7 and 9), so that the length of the range, s1 + s2, is

independent of the width and the shape of the line profile. Had the lengths of the

ranges of I N2 1
 and I N2 2

 been scaled according to ( ) ( )s s s sN N1 2 2 1 2 21 2
+ = +α , then

the calculation of the corresponding variances would have yielded the 1/2N-

dependence.

3.5 Effect of particle clustering

The simulations show that, although the {hk} diffraction line profiles of the matrix are

dependent on the state of particle clustering, for the case of pure "size broadening" the

centroid and the variance of these diffraction line profiles are practically unaffected by

clustering (see also discussion in Section 3.2 and footnote 4). Only for the utmost

clustered state when particles touch, the variance changes abruptly .

The effect of particle clustering can be clarified by comparing the Fourier

coefficients of the diffraction-line profiles for different states of clustering. As an

example, the real and imaginary parts of the Fourier coefficients, normalised by the

first Fourier coefficient and obtained using the tangent procedure (cf. Section 2.2.3),

have been plotted in Fig. 8 for Cf-values ranging from the unclustered state (Cf = 0) to
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the (utmost) clustered state where particles touch (with c = 0.087 it follows C f
max =

0.67, see Section 2.1) and 4 4N N× = 240 240× .

The imaginary parts of the Fourier coefficients of the {10} powder diffraction

line profile are zero independent of the state of particle clustering: the line profile

remains symmetric with respect to its origin as there is no shift of the centroid.

1

0.95

0.9

As(ξ)

12080400
ξ

0

00.67

all Cf

real part

imaginary part

1–c/(1–c)

0.5 0.17

Fig. 8. Real and imaginary parts of Fourier coefficients As(ζ) of {10} powder

diffraction line profile, obtained using the tangent procedure, of a large p.a.-unit cell

containing 4 4N N×  = 240 240×  atoms and four non diffracting particles of radius

NR = 20 (c = 0.0873) located at (x,y) = (±Lp, ±Lp) = (±Nca, ±Nca), with

Nc = 60 (Cf = 0), Nc = 50 (Cf = 0.17), Nc = 30 (Cf = 0.50) and Nc = 20

(Cf = C f
max  = 0.67).

1

0.995

0.99

As(ξ)

420
ξ

0.67

0 

C f = 0 67.

C f = 0 67.
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The real parts of the Fourier coefficients of the {10} powder diffraction line

profiles are clearly dependent on the state of clustering. It can be shown (see

Appendix D) that the "size Fourier coefficients" can be regarded as being the sum of a

constant level, As(ξ) = 1–c/(1–c) (As(ξ) ≈ 0.9 here), and the size Fourier coefficients of

the particles if they diffract and consist of matrix material. For Cf  = 0 the large p.a.-

unit cell is in its unclustered state and As(ξ) is periodic with period 2N (2N = 120

here). If Cf  > 0 the peak at ξ = 2N separates into two equal peaks of half heigth that

move either towards ξ = 0 or to ξ = 4N with a shift directly related to the state of

clustering.

According to a result of Fourier theory [17] the variance of the {hk} powder

diffraction line profile can be calculated from the curvature of the As(ξ)-curve at the

origin

Var
A

d A
d

hk

s

s= −
1

4 0
0

2

2

2π ξ( )
( ) . (13)

Since the curvature of the As(ξ)-curve at the origin (Fig. 8) does not change

significantly with clustering, the variance remains constant for almost all values of Cf.

However, as soon as particles touch, i.e. Cf  = C f
max , the curvature at the origin

changes, so that the variance changes. Physically this means that the clustered

particles cannot be considered as separate particles anymore.

4. "Size-strain separation"

If "size" and "(micro)strain" both contribute to line broadening, the problem arises

how to separate both contributions.

For the present case of misfitting particles in a matrix a series of variance-

range plots (calculated from the corresponding intensity distributions; cf. Section 3.4

and Fig. 7) is shown in Fig. 9 for a range of values for the misfit parameter ε. As

discussed in connection with Fig. 7 (where ε = 0: only "size" broadening") the slope of

the linear part of the curve with ε = 0 in Fig. 9 is representative of the "size

broadening": tails of the intensity distribution decay with 1/s2 [14-16]. It follows from

the results shown in Fig. 9 that (i) a linear part in the variance-range plots also occurs

for ε > 0, and (ii) that this slope is independent of ε. When one recognizes that "size"

dominates the tails of the intensity distribution at large values of s [14-16], these

results suggest that the variance of the "size broadening" occurring in all cases (ε > 0)
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is the same. This is compatible with the supposition that the full line profile can be

conceived as the convolution of the "size-" and "strain-broadened" parts [2, 11].

It is concluded that in the analysis of line width due to "strain" in a system of

misfitting particles in a matrix (see part II), the variance due to "size" only (the case

with ε = 0) can be subtracted straightforwardly from the variance for a case with ε > 0

in order to obtain the variance due to "strain" only.
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Fig. 9. Variance-range plots for {10} diffraction line profile of a p.a.-unit cell

containing one misfitting particle with c = 0.087, Ep/Em = 1 and p.a.-unit cell size

2 2N N×  = 240 240×  for various values of the particle matrix misfit: ε = 0, 0.01,

…, 0.05. The contribution of "size" and "strain" to the total broadening is indicated.

5. Conclusions

(i) Diffraction-line broadening due to misfitting particles in a matrix can be described

appropriately using a micromechanical model, introducing the concept of a particle-

arrangement unit cell and a suitable procedure for calculation of its structure factor.

(ii) "Size broadening" of matrix reflections arises due to finite interparticle distances

in the matrix between the particles.

(iii) The line width due to "size broadening" (expressed as standard deviation of the

intensity profile) is proportional to c c/ ( )1− , with c the particle fraction, and to

( ) /p 1 4 , with p the particle number density. The line width at constant c is proportional

to 1 2R , with R the particle radius.
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(iv) Clustering of particles does affect the powder diffraction line profiles, but it does

not affect the centroid and the variance due to "size" broadening as long as the

particles do not touch.

(v) For the case of misfitting particles in a matrix, the variances of the "size-" and

"strain-broadened" parts of the intensity distribution can be regarded as being additive

to a high accuracy. This implies that the variance of the "strain-broadened part" can be

obtained by subtraction of the variance observed in the case of pure "size broadening".

Acknowledgement

This work has been part of the research program of the Foundation for Fundamental

Research on Matter (Stichting FOM), The Netherlands.

Appendix A
 Interpolation of displacement field within an element

The displacement of an arbitrary point P in a quadrilateral element can be obtained by

bilinear interpolation between the displacements of its four nodes. First, the so-called

natural coordinates of P in a reference, square element are determined. Then, bilinear

interpolation of the displacements of each node using the natural coordinates yields

the displacement at P.

The natural coordinates (ξ,η) of P(x,y) are found from solving the following

matrix equation [10] for ξ and η
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. (A. 1)

with (xi,yi) the coordinates of the four nodes of the quadrilateral element. Working out

the matrix product of Eq. (A. 1), two non linear coupled equations are obtained
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(A. 2)

with ai and bi given by
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After elimination of the term ξη in Eq. (A. 2), ξ can be expressed in η as

ξ η= +c c1 2 (A. 4)

with

c
b x a y a b a b

a b a b
c
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a b a b

1
4 4 1 4 4 1

2 4 4 2
2

3 4 4 3
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4
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= −
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−

( ) ( )
;  (A. 5)

Subsequently, the relation between ξ and η is used in Eq. (A. 2) to obtain a quadratic

equation in η of the type e e e1
2

2 3 0η η+ + = , with e1, e2 and e3 as known constants,

which can be readily solved. Two solutions η1 and η2 are obtained that correspond

with ξ1 and ξ2, respectively, using Eq. (A. 4). However, since ξ and η are defined such

that –1 < ξ, η < 1 only one set of coordinates (ξ,η) is found.

The displacements (u, v) at P are finally calculated by means of the same

interpolation as in Eq. (A.1) [10]
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(A. 6)

with ui, vi the displacements of the four nodes of the quadrilateral element.

Appendix B
Calculation of the structure factor using the Fast Fourier Transform

algorithm

The calculation of the structure factor of the p.a.-unit cell can be carried out

straightforwardly using Eqs. (3) and (4) (cf. Section 2.2.2). To improve the speed of

this calculation, these formulae are rewritten in a form that enables the use of a Fast

Fourier Transform algorithm. The discussion in this appendix is limited to a one-
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dimensional case, although the method can be adapted easily and straightforwardly to

two and three dimensional cases.

B. 1. One-dimensional particle arrangement unit cell

The one-dimensional analogon of the two-dimensional p.a.-unit cell is displayed in

Fig. B1. It consists of a row of 2N atoms with a one-dimensional (misfitting)

"particle" at the center (origin of x-axis). This one-dimensional p.a. unit cell is

described in analogy with the two-dimensional p.a.-unit cell by a p.a.-unit cell vector
~a , which is equal to ~a a= 2N  with a the matrix unit-cell vector and a = a the atomic

distance. The structure factor of this p.a.-unit cell, with rn  the position of atom (n)

with respect to the origin of the p.a.-unit cell and f n  the scattering factor of atom (n),

is given by (cf. Eq. (3))

F h f en
i

n

N
(
~

) = ⋅

=

−
∑ 2

0

2 1
π H rn . (B. 1)

The one-dimensional diffraction vector H b= ~~
h  is expressed in terms of the real-

valued variable ~h  and the reciprocal lattice vector 
~
b , ( ~ ~

a b⋅ = 1). The "~" symbol is

used to mark all variables directly related to the p.a.-unit cell vector ~a .

Each vector rn  is expressed by means of a fractional coordinate ~X n , i.e.

r an nX= ~ ~ . In the deformed state, the fractional coordinates are written as (cf. Eq. (4))

~ ( )
X

n N a u
Na Un

n=
+ − +

+

1
2

2 2
(B. 2)

with un the displacement of atom n from its undeformed position ( )n N a+ −1
2 .

Combining Eqs. (B. 1) and (B. 2), the one dimensional p.a.-unit cell structure factor is

given by

F h f en
ih

n N a u

Na U
n

N n

(
~

)
~ ( )

=
+ − +

+
=

−
∑ 2

2 2
0

2 1 1
2π

(B. 3)

As explained in Section 2.2.2, F h(
~

)  for an infinitely large crystal needs only be

calculated at integer positions within the range 2(hB–1/2)N < ~
h  < 2(hB+1/2)N, where

hB denotes the value of h at a Bragg position according to the one-dimensional matrix

unit cell description.
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x

Fig. B.1. Schematic presentation of the redefinition of the displacement field of

(particle and) matrix atoms in a one-dimensional p.a.-unit cell of 2N = 20 and NR =

2; only the right half of the p.a.-unit cell is shown. In (a) the positions of the atoms in

the deformed state are shown. In (b) the reference lattice positions are shown. The

displacement of a matrix atom from its strain free, reference lattice, position is

redefined as the displacement from the nearest reference lattice position. This is

indicated in (a) and (b) by the dotted lines that connect the displaced atoms with the

nearest reference lattice position. These atoms are denoted "regular" atoms. If no

matrix atom is close enough to a specific reference lattice point then that reference

lattice point is conceived as a vacancy, indicated by the "   "-symbol in (b). If more

than one atom is close to the same reference lattice point the one closest to this lattice

point is selected. The remaining one is considered an "interstitial" type of atom (see

(c)). The calculation of the structure factor is performed in two parts: one part uses

the FFT-method of Eq. (B. 10) which includes all regular atoms and the local

vacancies and the other part uses the fundamental description (Eq. (B. 9)) for the

"interstitial" type of atoms.

The total number of calculations necessary to calculate the intensity

distribution of an {hB} reflection is dependent on the square of the number of atoms

within the p.a.-unit cell: for every single line intensity, 2N summations have to be

carried out in Eq. (B. 3) and every {hB} reflection consists of the same number of line

intensities.

(a)

(b)

(c)

particle matrix

"regular" atoms

"interstitial" atoms
n=N         2N–1 .        .
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B. 2. Calculation of the structure factor using the discrete Fourier transform

The discrete Fourier transform P(t) of an arbitrary discrete function p(m) of period M

is given by [17]

P t
M

p m e it
m

M
m

M
( ) ( )=

=

−
∑

1 2

0

1 π  (B. 4)

where both the real space variable, m, and the Fourier space variable, t, are integers,

here. Comparing this equation with Eq. (B. 3) (M = 2N), we see that Eq. (B. 3) cannot

be considered a discrete Fourier transform due to the contribution of the displacement

field in the numerator and denominator of the exponent of Eq. (B. 3). However, Eq.

(B. 3) can be rewritten such that an equation similar to Eq. (B. 4) is obtained.

Firstly, a new lattice constant is defined for the deformed p.a.-unit cell. In the
deformed state, the length of the p.a.-unit cell vector equals ~a = +2 2Na U . A new
(average) lattice constant ad is defined such that ~a = 2Nad  and a a U Nd = + . Then,

the displacement un
d  of an atom from its undeformed position given by the new lattice

constant can be expressed as

u u n N
U
Nn

d
n= − + −( )1

2 . (B. 5)

The structure factor according to. Eq. (B. 3) can now be rewritten as

F h f en
ih

n N u a

N
n

N n
d

d

(
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)
~ ( )

=
+ − +

=

−
∑ 2

2
0

2 1 1
2π . (B. 6)

Secondly, the diffraction vector is  expressed in terms of the deviation from

the Bragg position (in terms of the p.a.-unit cell description: at the Bragg position
~
h NhB B= 2 ; see at the end of Section 2.2.2): H b )b= =~~

(
~ ~

h Nh + hB2 ∆ , or
~ ~
h Nh hB= +2 ∆ . Note that since 

~
h and 2NhB

~
 are integers, ∆~

h  is integer too.

Now Eq. (B. 6) can be split up into a displacement-dependent part and a

displacement-independent part:



34 Chapter 2
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where the term (n+1/2-N) has been reduced to n as this leaves the value of

F h F h(
~

) (
~

)*  unaffected. Although the third exponential on the right hand side of Eq.

(B. 7) is similar to the exponential given in Eq. (B. 4), Eq. (B. 7) is not a discrete

Fourier transform since the second exponential on the right hand side of Eq. (B. 7)

depends on ∆~
h .

Next, the second exponential on the right hand side of Eq. (B. 7) is written as a

Taylor series expansion leading to

( ) ( )[ ]F h
i h N

t
f u a e e

t

t
n n

d
d

t ih u a i
h n

N

n

N
B n

d
d(

~
)

~

!

~

=










=

∞

=

−
∑ ∑

2 2

0

2 2
2

0

2 1π
π π∆ ∆

(B. 8)

The term within braces represents the discrete Fourier transform of the function in

square brackets (cf. Eq. (B. 4)). The structure factor is computed by a finite sum of

such Fourier transforms. For the 2D case considered in this work Eq. (B. 8) has been

summed up to t = 8, leading to a relative error in the value of the variance smaller than

10-4 %.

The number of terms of the Taylor series expansion necessary to calculate

accurately the structure factor is limited only if the displacements are small compared

to ad. However, in the immediate neighbourhood of misfitting particles, displacements

of the order of several atomic distances can occur. This may seriously destroy the

convergence of the series, especially for large deviations from the Bragg position. This

can be remedied in the following way.

For the calculation of the structure factor the locations of all atoms in the

deformed state are considered and therefore it is not important from which reference

lattice points the atoms were displaced (cf. Fig. B1). Thus, the displacement of an

atom over several atomic distances can also be conceived as a displacement from a

different reference lattice point over a distance smaller than the atomic distance. In

this way the displacement of all atoms is redefined as the displacement from the

nearest reference lattice point. Thus, all atomic displacements remain smaller than half

of the atomic distance and only a few terms of the Taylor series expansion (B. 8) need

to be taken into account. Following this procedure, only one atom is allocated to most

reference lattice points; these atoms are denoted "regular" atoms from now on.

However, two special cases need to be considered: (i) two or more atoms are close to
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the same reference lattice point and (ii) no atom is close enough to a specific reference

lattice point (see Fig. B1).

In the first case, only one atom can be assigned to the reference lattice point.

The contributions to the structure factor of the remaining, "interstitial" type of atoms

(see Fig. B1) cannot be calculated by the discrete Fourier transform method but

requires application of the fundamental equation, similar to Eq. (B. 3):

F h f e i
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N

int n n

int

int

(
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) = ⋅

=
∑ 2

1

π H r (B. 9)

with Nint the total number of "interstitials".

In the second case, no atom is close enough to a specific reference lattice point

and, consequently, there is no contribution of this reference lattice point to the

structure factor. Hence it can be treated as a vacancy. In the calculation of the structure

factor this is handled by setting the atomic scattering factor fn for this reference lattice

point equal to zero. (Since the total number of atoms remains unchanged it is clear

that the number of "vacancies" equals the number of "interstitial" type atoms).

Finally, the structure factor of the p.a.-unit cell in the deformed state equals the

sum of the contribution of all "regular" atoms and all "interstitial" atoms, i.e.
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(B.10)

where f n

∧
 indicates the atomic scattering factor ( f fn n

∧
=  for an atom and f n

∧
= 0  for

a vacancy) and u n
d

∧
 indicates the redefined displacement field that assigns to each

reference lattice points a displacement smaller than half of the atomic distance.

The calculation of the structure factor using Eq. (B. 10) is much faster than

that using Eq. (B. 3): the calculation on the basis of Eq. (B. 3) increases quadraticly

with the number of atoms (cf. Section B.1), whereas the calculation on the basis of Eq.

(B. 10) increases approximately linearly with the number of atoms. The total number

of calculations on the basis of Eq. (B. 10) can be assessed as follows. The contribution

of the majority of atoms to the structure factor is calculated using a Fast Fourier

Transform algorithm. The calculation of the discrete Fourier transform of 2N

datapoints is proportional to 2N log(2N) [17]. If the number of terms used in the

Taylor series expansion equals tmax, the total number of calculations for the "regular"

atoms thus scale as 2Ntmax log(2N). The number of calculations for the "interstitial"
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type atoms scale as Nint2N (see discussion below Eq. (B. 3)). Thus, the total number of

calculations for the structure factor on the basis of Eq. (B. 10) scale as

2N(tmaxlog(2N)+Nint) with Nint << 2N, which shows that for large values of 2N this

number increases approximately linearly with 2N.

B. 3. Simplified calculation of the structure factor

If ∆~
h  is small ( ∆~

h N<< ) the second exponential on the right hand side of Eq. (B. 7)

can be neglected, which is equivalent to a maximum value of t in Eq. (B. 7) of t = 0,

and a simplified, approximate, again discrete Fourier transform expression for the

structure factor results
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n

N
B n

d
d(
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=
=

−
∑ 2 2

2

0

2 1
π π
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(B. 11)

The simplification is equivalent to replacing H r⋅   in Eq. (B. 1) by H rB ⋅ . In

standard treatments of X-ray diffraction (e.g. Warren [11]) this same approximation is

carried out in the calculation of line profiles. The real-valued variable  h3 in reciprocal

space is replaced by the order of reflection l of a {00l}-type reflection and only the

component of displacement of unit cell m along the h3-axis,  Zm, is considered.

Appendix C
Influence of the rotation procedure on the centroid and variance of the

{hk} powder diffraction line profile

A powder diffraction line profile can be obtained from the intensity distribution in

reciprocal space of a single powder particle using the rotation procedure (cf. Section

2.3). This procedure causes an intensity distribution of a single powder particle that is

symmetrical in reciprocal space to become slightly asymmetrical after projection onto

the diffraction vector. The asymmetry leads to an additional shift of the centroid (cf.

Fig. 5a) which is proportional to the variance of the powder diffraction line profile as

is proven here.

The position of an {
~~

}h k  line intensity in reciprocal space, H(h k )~, ~ , is

described as the sum of the vector indicating the Bragg position of the reflection

considered, HB, and a vector describing the deviation from the Bragg position,

∆H(h ,k )
~ ~
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H H H(h ,k) (h ,k)B
~ ~ ~ ~= + ∆ (C. 1)

The distance of the {
~~

}h k  line intensity to the origin of reciprocal space, |
~ ~

|H(h ,k) ,

follows from Eq. (C. 1) as

H H
H H

H

H

H
(h ,k)

(h ,k ) (h ,k)
B

B

B B

~ ~
~ ~ ~ ~

= +
⋅

+1 2 2

2

2

∆ ∆
(C. 2)

Since in Eq. (C. 2) the second and third term inside the square root are small

compared to the first one, the square root can be approximated by a Taylor series.

Using the first term of the Taylor series expansion only, Eq. (C. 2) can be simplified

to

H H H
H

H

H

H
(h ,k) (h ,k)

(h ,k )
B

B

B B

~ ~ ~ ~
~ ~

≅ + ⋅ +∆
∆1

2

2

(C. 3)

Using this equation to calculate the centroid position according to Eq. (6) (cf. Section

2.3) in case of the rotation procedure yields

H
I h ,k h ,k

I h ,k

I h ,k h ,k

I h ,k
c rot
hk

B
B

B

B
,

(
~ ~

) (
~ ~

)

(
~ ~

)

(
~ ~

) (
~ ~

)

(
~ ~

)
= + +

⋅∑∑
∑∑

∑∑
∑∑

H
H

H H

H

H 21 1
2

∆ ∆

(C. 4)

with the subscript "rot" denoting the rotation procedure. The second term on the right

hand side of Eq. (C. 4) expresses the projection of ∆H(h k )
~

,
~

 perpendicularly onto the

diffraction vector HB as is the case applying the tangent procedure. Thus, the sum of

the first and the second term corresponds exactly to the centroid that would have been

obtained if the tangent procedure had been used. Consequently, the third term

expresses the difference between the tangent and the rotation procedure. This term is

proportional to the square of the distance of the matrix Bragg reflection H B  to the

{
~~

}h k  line intensity, ∆H 2(h ,k )
~ ~

, and can be interpreted in terms of the variance of this

line profile.
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The variance of the {hk} line profile is calculated with respect to the centroid

position using Eq. (8) (cf. Section 2.3). If the centroid of the {hk} line profile is

shifted from Hc
hk

B= H  by an amount δh then the variance according to the rotation

procedure is equal to

( )Var
I h ,k h ,k

I h ,k
hrot

hk = +
∑∑

∑∑
(
~ ~

) (
~ ~

)

(
~ ~

)

∆H 2

δ 2 . (C. 5)

From a comparison of the size of the shift of the centroid in Fig. 5a, δh ≈ 10-3, and the

size of the related variance of the corresponding line profile in Fig. 5b for the case of

the rotation procedure, Varrot
hk  ≈ 10-3, it can be concluded that the contribution of (δh)2

to Varrot
hk  is negligible. Then combining Eqs. (C. 4) and (C. 5) the centroid shift

according to the rotation procedure can be written as

H H
Var

c rot
hk hk rot

hk

B
, = +c,tan

2 H
(C. 6)

where the subscript "tan" denotes the tangent procedure. From this equation it is

concluded that the additional centroid shift of the powder diffraction-line profile due to

the rotation procedure is proportional to its variance and inversely proportional to the

(relative) length of the diffraction vector indicating the Bragg position of the {hk}

reflection.

Appendix D
Calculation of the size Fourier coefficients of a p.a.-unit cell

containing clustered particles

The structure factor of a large p.a.-unit cell containing four particles shifted from the

center to locations given by (x,y) = (±Lp, ±Lp) = (±Nca, ±Nca) is written, in analogy

with Section 3.3, as the difference of two terms (see Fig. 2). The first term involves a

sum over all matrix and hypothetical particle atoms, Fpf (the case of a particle free

p.a.-unit cell). The second term involves a summation over all atoms of the particles

only, assuming that the particles consist of matrix material. If Fp represents the

structure factor of one such particle located at the center of the large p.a.-unit cell,

then for each particle, located at (x,y) = (±Nca, ±Nca) its contribution to the structure

factor is obtained by the product of Fp and a phase factor e i hN kN Nc c2 4π ( )± ± . Thus, the
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structure factor of the p.a.-unit cell containing all four particles, F h k(
~

,
~

) , can be

expressed as (cf. Eq. (8))

F h k F Fpf p(
~

,
~

) = − α (D. 1)

with

α
π π

=


















4

2
4

2
4

cos
~

cos
~

h N
N

kN
N

c c
(D. 2)

The intensity distribution in reciprocal space of a single crystal composed of an

infinite number of p.a.-unit cells equals, according to Section 2.2.2,

I h k F h k F h k(
~

,
~

) (
~

,
~

) (
~

,
~

)*=  at integer values of 
~
h  and 

~
k . Writing

F h k F h k I h kp p p(
~

,
~

) (
~

,
~

) (
~

,
~

)* = , it follows that (cf. Eq. (10))

I h k I h k I h k I h kp p B B B B(
~

,
~

) (
~

,
~

) ( , ) ( , )= − +α 2 . (D. 3)

The intensity distribution has two contributions: (i) at the Bragg position

I h k N cB B(
~

,
~

) ( ( ))= −16 12 2  (see below Eq. (10)) and (ii) at non-Bragg positions the

intensity distribution in reciprocal space equals the intensity distribution that would

have been obtained if only particles made of matrix materials had diffracted,

I h k I h kp(
~

,
~

) (
~

,
~

)= α 2 , where α2 can be expressed as

[
]

α π π

π π

2 4 1 4 4 4 4

4 4 4 4

= + + +

+ + −

  

             

cos(
~

) cos(
~

)

cos( (
~ ~

) ) cos( (
~ ~

) )

h N N kN N

h k N N h k N N

c c

c c

(D. 4)

Now, on the basis of Eqs. (D.3) and (D. 4) the (2D) size Fourier coefficients of

I h k(
~

,
~

) , normalised by the first Fourier coefficient, As ( , )ξ ζ , consist of the sum of

the Fourier coefficients of two contributions. The normalised Fourier coefficients of

the first contribution can be expressed as A c cs
i( ) ( , ) / ( )ξ ζ = − −1 1 , i.e. a constant

level independent of the degree of clustering.

The Fourier coefficients of the second contribution, As
ii( ) ( , )ξ ζ , represent the

Fourier coefficients of the hypothetically diffracting particles made of matrix material;

they can be calculated in the following way (see Eq. (D. 4)). If the Fourier coefficients



40 Chapter 2

of I h kp (
~

,
~

)  equal As
p ( , )ξ ζ , with ξ and ζ as the (harmonic) numbers, then according

to Fourier theory [17], the Fourier coefficients of I h k h Np (
~

,
~

) cos(
~

)4 4πω  equal

[ ( , ) ( , )] /A N A Ns
p

c s
p

cξ ζ ξ ζ+ + − 2 , i.e. the Fourier coefficients consist of half the

sum of two replicas of As
p ( , )ξ ζ  shifted by an amount of ±Nc along 

~
b1 . In the same

way, the contribution of other terms of α2 to As
ii( )  can be calculated giving rise to an

unshifted replica of As
p ( , )ξ ζ  located at the origin of reciprocal space and shifted

replicas displaced by amounts (0, ±Nc) and (±Nc, ±Nc), respectively.

Thus, the size Fourier coefficients of the intensity distribution of a p.a.-unit cell

containing four non-diffracting particles clustered along x = ±y can be conceived as the

sum of a constant level and unshifted replica of the size Fourier coefficients of

hypothetically diffracting particles made of matrix material and four pairs of shifted

replicas.
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Abstract

The effects of misfitting precipitates in a polycrystalline matrix on the shift and broadening

of diffraction-line profiles are investigated applying a novel approach to the simulation and

interpretation of diffraction line profiles. The strain fields are calculated in two ways by

using (i) a numerical analysis for a unit cell containing one or a few precipitates and (ii) an

analytical, Eshelby-type approximation. The diffraction-line profiles are computed as a

function of the precipitate-matrix misfit, the elastic moduli of precipitates and matrix, the

volume fraction of precipitates and the degree of precipitate clustering. The relations

between the characteristics of the strain fields and the shifts and broadenings of the

diffraction-line profiles are established. Against this background, the approximations

traditionally applied in X-ray diffraction analysis are critically analyzed.

1. Introduction

X-ray diffraction measurements of materials containing a dispersion of particles

exhibit shift and broadening of diffraction-line profiles, as compared to the particle-

free situation [1, 2]. The line shift can be caused by a change of the overall lattice

parameter, caused for instance by a change of composition upon precipitation, or, less

obviously, by the development of a hydrostatic (macroscopic) stress component [3].

The line broadening can be caused by "size" and "microstrain" effects.
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This study has been initiated to find out how key parameters characterizing the

strain fields in a precipitating system can be determined by (X-ray) diffraction

measurements. In part I of this work, it has been shown for a micromechanical 2D

model how a continuum strain field can be effectively used to simulate the diffracted

intensity distributions directly from the kinematic diffraction theory. The "size

broadening", in the absence of "strain" (i.e. no misfit between the particle and matrix),

due to the finite spacing between particles, was analysed in detail. Furthermore, it was

shown how the "size broadening" can be separated from the "strain broadening".

In this paper, attention is focussed subsequently on the analysis of "strain

broadening" solely. In particular the relations between the line width and strain-field

parameters such as the mean square strain, and the (misfitting) particle size, density

and distribution are investigated.

The strain fields considered here include effects due to the interaction of strain

fields of neighbouring particles. Results obtained are compared with those from a

simple Eshelby-type approximation. Attention is paid to the directional dependence of

strain fields as well as to line-profile shifts and broadenings, proceeding from

explorative work conducted earlier [4, 5].

2. Basis of micromechanical and diffraction calculations

A two-dimensional model material with a doubly periodic arrangement of circular

misfitting particles in an elastic matrix is considered (see Part I). Due to the particle

ordering, a square unit cell can be defined such that its deformation due to the

particles fully characterizes the entire particle-matrix composite: i.e. the particle-

arrangement unit cell ("p.a.-unit cell"). The particle with radius Rp is located in the

centre of the cell, which has size 2 2L L× . The particle area fraction c is

c R Lp= π 2 24 . Each phase exhibits linear elastic, isotropic behaviour with Young's

moduli Em ("m" denotes matrix) and Ep ("p" denotes particle), and Poisson ratios νm

and νp. The particle-matrix misfit is characterized by the linear misfit parameter ε.  To

study the influence of non-periodic distributions of second-phase particles, local

deviations of the periodic distribution of particles are considerd: a p.a.-unit cell is

taken which contains four identical circular particles that are clustered near the centre

of the p.a.-unit cell and are located on the cell diagonals (see Fig. 2 in part I). The

degree of clustering is measured by the dimensionless cluster factor C L Lf p= −1 ,

with 2Lp the distance between neighbouring circular particles in the p.a.-unit cell.

Stress, strain and displacement fields inside the p.a.-unit cell can be routinely obtained

by finite element methods. Results of this description will be identified with subscript

"p.a." further on.
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In the case that the p.a.-unit cell contains a single particle, an approximate

solution can be obtained, following a suggestion by Eshelby [6]. First the 2 2L L×
matrix is replaced by a circular matrix with an effective radius of R Lm

eff = 2 π , so

that the particle fraction is the same. Then, the classical Eshelby solution is used for a

misfitting particle in an infinite matrix, corrected so that the traction at the matrix

outer radius Rm
eff  vanishes. The solution is given in Appendix A. Due to the finite

radius of the matrix, some elastic interaction between particles is accounted for

effectively, but, obviously, the directionality of the strain field due to the specific

distribution of the precipitates is absent in this approximate description. Results of this

approximate description will be identified with subscript "Esh" further on.

The calculation of a powder diffraction line profile is briefly summarized here;

see part I for a full discussion. The p.a.-unit cell is filled with a square grid of atoms at

an atomic distance a in the undeformed state. The displacement field, induced by the

misfitting particle in the matrix, is sampled at the locations of the atoms. The kinematic

diffraction theory is then used to calculate the intensity distribution in reciprocal space

from the position of the displaced atoms in the p.a.-unit cell. Powder diffraction line

profiles are obtained by projecting the line intensities in reciprocal space onto the

diffraction vector by either an exact, rotation procedure or by an approximative, yet

commonly applied, procedure, called the tangent procedure.

The "size" contribution to the intensity distribution is eliminated by means of the

method discussed in part I.

3. Characterization of strain fields and line profiles

The {hk}-powder diffraction-line profile contains information on strain components

ehk in the 〈 〉hk -directions only [1]. Therefore, the matrix-strain field is characterized

in 〈 〉hk -directions by the probability distribution of matrix strains, P(ehk), the average

local strain 〈 〉ehk and the root mean squared local strain 〈 〉ehk
2 . The last measure is

defined here with respect to 〈 〉ehk  as

( )
〈 〉 =

− 〈 〉∫∫

∫∫
e

e e dxdy

dxdyhk

hk hk
A

A

m

m

2

2

, (1)

where Am is the matrix part of the p.a.-unit cell and where x and y denote Cartesian

coordinates with the origin at the centre of the p.a.-unit cell, (cf. Fig. 1 in part I). In the
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finite element solution the contribution of a finite element is obtained from the

average of the values at the four integration points of that element [7].

Due to the symmetry of the p.a.-unit cell it can be proven that 〈 〉ehk  is

independent of the 〈 〉hk -directions and hence it represents the hydrostatic strain (see

Appendix B). Therefore the subscript "hk" will be omitted for the average strain 〈 〉e

in remainder of this paper.

Obviously, the Eshelby-type approximate solution is inherently independent of

the 〈 〉hk -directions because of the circular symmetry.

The {hk} powder diffraction-line profile consists of a series of {
~~

}h k  line

intensities, I h k(
~

,
~

) . It is characterized by its centroid Hc
hk , as a measure of profile

position, and its standard deviation S hk , as a measure of profile width. Here,

H
h k I h k

I h k
c
hk kh

kh

=
∑∑

∑∑

| (
~

,
~

)| (
~

,
~

)

(
~

,
~

)

~~

~~

H
, (2)

with | (
~

,
~

)|H h k  the distance from the origin of reciprocal space to a specific {
~~

}h k  line

intensity obtained by projection onto the diffraction vector by either the tangent

procedure or the rotation procedure (cf. part I), and

( )S Var
h k H I h k

I h k
hk hk

c
hk

kh

kh

2

2

= =
−∑∑

∑∑

(| (
~

,
~

)| ) (
~

,
~

)

(
~

,
~

)

~~

~~

H
(3)

with Varhk as the variance of the profile considered (defined with respect to Hc
hk ).

Diffraction estimates for 〈 〉e and 〈 〉ehk
2  can be obtained from Hc

hk  and Varhk

as follows. The centroid of a (strain broadened) line-profile, Hc
hk , is indicative of the

average lattice spacing in the diffracting material. Thus, with dhk and dhk
0  as the

(average) lattice spacings for the strained and strain-free material, and Hc
hk  and Hc

hk
,0

as the corresponding centroids in reciprocal space, it follows

〈 〉 =
−

=
−

e
d d

d

H H

Hhk XRD
hk hk

hk

c
hk

c
hk

c
hk

0

0
0

0

1 1

1
,

,
. (4)

where the subscript "XRD" is used to indicate that the concerned measure for strain is

derived from the diffraction-line profiles. A prerequisite for the above is that the

relative displacements of adjacent unit cells are small compared to the unit cell
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dimensions [8-10]. This will reasonably be the case if the linear misfit parameter is not

chosen larger than, say, ε = 5 %. Even in the case of incompressible misfitting particles

(Ep/Em → ∞ ), it can be shown with the aid of Appendix B, that the strains in the matrix

at the particle/matrix interface (r = Rp) are of the same order of magnitude as ε.

The variance of the strain broadened profile, Var hk
ε , is obtained by subtraction

of the variance of the merely size broadened profile, Var Shk hk
ε ε= =0

2( ) . According to [8 -

10] , this variance is a measure of the root mean squared strain,

〈 〉 =e
H

Shk XRD
c
hk

hk2

0

1

,
ε . (5)

4. Analysis of misfit-strain fields

4.1. Role of particle fraction; orientation dependence of strain parameters

The average local matrix strain 〈 〉e  has been calculated as a function of the particle

fraction c for values of E Ep m  equal to 0.1, 1 and 10, in the unclustered state.

Throughout this work the Poisson ratios of particle and matrix have been taken equal:

νm = νp = 0.3. The results for 〈 〉e  are shown in Fig. 1 both for the numerical p.a.-unit

cell analysis ("p.a.") and the analytical Eshelby-type analysis ("Esh"). The average

local matrix strains 〈 〉e Esh  and 〈 〉e p a. .  obviously increase with the particle fraction c

(exactly linearly for E Ep m  = 1 in the "Esh"-approximation; see Appendix B), with

the increase being larger for larger ratio E Ep m . This reflects the fact that a larger

part of the misfit has to be accommodated by the matrix if the particle becomes

relatively more rigid. The differences between the "p.a." and the "Esh" results are very

small up to large particle fractions and for a wide range of E Ep m . In Fig. 1,

differences become visible only for particle fractions above c = 0.25 at E Ep m  = 10.

So, the average matrix strain obtained from the direction-independent "Esh"-model

provides a very good approximation of the actual average matrix strain obtained from

the p.a.-unit cell description.

The mean squared local matrix strain 〈 〉ehk
2  in the 〈 〉10  and the 〈 〉11  directions

of the matrix is shown for the "p.a." and "Esh" descriptions in Fig. 2. The respective

values 〈 〉ehk p a
2

. .  and 〈 〉ehk Esh
2  also increase with the particle fraction c and Young’s

modulus ratio E Ep m (exactly linearly only for E Ep m  = 1 in case of the "Esh"-

description). However, a distinct difference between the results from both descriptions

occurs: 〈 〉ehk p a
2

. .  clearly shows direction dependence whereas 〈 〉ehk Esh
2 , of course,

does not. Also note that (i) 〈 〉e p a10
2

. .  is always larger than 〈 〉e p a11
2

. . , (ii) their difference
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increases with particle fraction c and E Ep m , and (iii) 〈 〉ehk Esh
2  is always in between

both.

.

0.20

0.15

0.10

0.05

0

 

0.40.30.20.10

c

    Ep /Em = 10
  Ep /Em = 1
  Ep /Em = 0.1

p.a.

p.a.

p.a.

Esh

Esh

Esh

Fig. 1. Normalised average strain 〈 〉e ε   in the matrix, according to the p.a.-unit cell

description and according to the Eshelby-type description, versus particle fraction c

for different E Ep m .
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Fig. 2. Normalised mean square strain 〈 〉ehk
2 2/ ε  in the matrix, according to the p.a.-

unit cell description and according to the Eshelby-type description, versus particle

fraction c for different E Ep m  in two crystallographic directions 〈 〉10  and 〈 〉11 .
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The directional dependence of the strain field according to the "p.a."

description is revealed also in the probability distribution of matrix strains,

P ehk p a( ) . .ε : the width of this probability distribution can be characterized by its

variance 〈 〉ehk p a
2

. .  according to Eq. (1). Probability distributions of matrix strains in

the 〈 〉10  and the 〈 〉11  directions are shown in Fig. 3 for c = 0.087 with E Ep m  = 1.

Each probability distribution is symmetric about the average local matrix strain 〈 〉e .

The shapes and the widths of the probability distributions, however, differ strongly:

P e p a( ) . .11 ε  is relatively narrow, whereas P e p a( ) . .10 ε  is much broader and,

additionally, has satellite peaks at both sides of the main peak. Consequently the

variance of P e p a( ) . .10 ε  is larger than that of P e p a( ) . .11 ε  (cf. Fig. 2).

The probability distribution of matrix strains according to the "Esh"

description has also been calculated using the area-weighted procedure as described in

Section 3. The probability distribution so obtained is symmetric about the average

matrix strain and exhibits two equally high maxima for small values of the strain (for

the case shown in Fig. 3 at e ε ≈ 01. ). Hence, P ehk Esh( )ε  cannot be considered at

all as some average of P e p a( ) . .10 ε  and P e p a( ) . .11 ε , as can be anticipated on the

basis of the 〈 〉ehk
2 data shown in Fig. 2.

0.20
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Fig. 3. Probability distributions of matrix strains P(ehk/ε) in the 〈 〉10  and 〈 〉11

directions of normalised strain ehk/ε, according to the p.a.-unit cell description and

according to the Eshelby-type description, for a particle fraction of c = 0.087 with

E Ep m  = 1 in the unclustered state, Cf = 0. The average matrix strain is

〈 〉 ≅ 〈 〉 =e ep a Esh. . ε ε  0.032.
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The probability distributions of matrix strains shown in Fig. 3 differ especially

for the moderate and small strain values ( e ε < 0 2. ), and the differences reduce with

higher strains. This can be understood by recognizing that the largest strains are

confined to a small region near the particle/matrix interface and therefore are not

influenced much by the presence of neighbouring misfitting particles. Hence, the

directional dependence of 〈 〉ehk p a
2

. .  is due in particular to the region (with large area

fraction) away from the particle/matrix interface, in between the particles.

The origins of the differences seen in Fig. 3 can be demonstrated in terms of

the iso-strain contours around a misfitting particle as shown in Figs. 4a-d. The

contours show the distribution of deviatoric strains, i.e.: the hydrostatic strain has been

subtracted

′ = −e e eij ij ij1 3 κκ δ . (6)

In this case, by contruction of the solution (cf. Section 2.1), the iso-strain contours of

the Eshelby-type approach are exactly equal to those of a single misfitting particle in

an infinitely large matrix.

Now, suppose two equal misfitting particles, with identical mechanical

properties (so that fields can be superimposed) as the matrix, are brought together

from infinity along, for example, the x-axis until their centres are a distance 2L apart.

The 〈 〉10 -strains of a single particle exhibit mirror symmetry with respect to the x-axis

and the y-axis. Therefore, starting at infinite interparticle distance, the 〈 〉10  deviatoric

strains on the x-axis on both sides of the particles are negative (see Fig. 4c) and thus it

follows directly upon decreasing the interparticle distance along the x-axis that for the

region in between both particles the sum of the strain fields of the two particles

becomes more negative than the corresponding values for the individual particles:

compare the ′ = −e10 01ε . - and ′ = −e10 0 2ε . -iso-strain contours of the "p.a."

description and the "Esh" description in Figs. 4a and 4c, respectively. Thus, particle

interaction explains the origin of the satellite maxima in P e p a( ) . .10 ε  at e10 0 2ε ≈ − . .

(Similar reasoning for the satellite maximum at e10 0 2ε ≈ + . ).

The 〈 〉11 -strains of the "Esh" description of a single particle also exhibit

mirror symmetry, but with respect to the lines x = |y|. Then, the 〈 〉11  deviatoric strains

of the particles above the x-axis are of opposite sign, and similarly also below the x-

axis. Hence, upon bringing together two equal particles from infinity along the x-axis,

the sum of the strain fields of the two particles becomes less positive and less

negative, respectively, than the corresponding values for the individual particles.

Consequently, the | | .′ =e11 01ε - and | | .′ =e11 0 2ε -iso-strain contours of the p.a.-unit



X-Ray Diffraction Line Shift and Broadening of Precipitating Alloys; Part II 49

cell description are confined more to the particle than those of the Eshelby-type

description; cf. Figs. 4b and 4d. Therefore, the fraction of the p.a.-unit cell with 〈 〉11

strains deviating only slightly from the average matrix strain (say, | | .′ <e11 01ε ) is

larger than for the "Esh" description. As a result, satellite maxima are absent for

P e p a( ) . .11 .
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c) "Esh"-description: ′e10 ε d) "Esh"-description: ′e11 ε

Fig. 4. Comparison between the iso-strain contour plots of the 〈 〉10  and 〈 〉11  strain

distributions at a particle fraction c = 0.087, according to the p.a.-unit cell

description (Figs. a and b, respectively) and according to the Eshelby-type

description (Figs. c and d, respectively). Contour levels are | |′e ε = 0, 0.1, 0.2, 0.4

and 0.6 with signs as indicated. These figures show the deviatoric strains, see Eq. (6).
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4.2 Role of particle/matrix misfit; scaling properties

The calculated local strain scales linearly with the particle/matrix misfit ε, since linear

elasticity theory has been applied. Therefore, the probability distribution of matrix

strains, P ehk( )ε , is independent of ε and the average strains or the root mean

squared strains, 〈 〉ehk
2 , depend linearly on ε with proportionality factors determined

by c, E Ep m , νm and νp.

For equal Poisson ratios of particle and matrix (νm = νp = ν) the strain fields in

matrix and precipitate according to the Eshelby-type description are completely given

by a combination of ε and E Ep m  through an effective misfit strain

ε εeff p mQ E E c= ( , )  (see appendix B). Hence 〈 〉e Esh , 〈 〉ehk Esh
2  and the shape of the

probability distribution of matrix strains P ehk( )ε Esh  depend on εeff only. Such kind

of scaling of the strain field (measures) also holds for the p.a.-unit cell description as

long as 〈 〉 ≅ 〈 〉e eEsh p a. .  (see Fig. 1).

4.3 Role of particle clustering

The effect of clustering of misfitting particles on the strain parameters is analysed for

two different particle fractions, c = 0.031 and c = 0.087, corresponding to cases with a

relatively weak and relatively strong orientation dependence, respectively.

The strain fields of the large (4 4L L× ; cf. Fig. 2 in part I) p.a.-unit cells have

been calculated for cluster factors 0 < Cf < 0.5 for c = 0.087, and 0 <  Cf < 0.7 for

c = 0.031 with E Ep m  = 0.1, 1, and 10 (for definition of Cf, see Section 2.1 in part I).

Note that for any value of c there is an upper bound for Cf, recognizing impenetrable

particles: with L Rp p≥ 2  it follows C cf ≤ −1 2 π . Obviously, the strain field

according to the "Esh" description is independent of the cluster factor Cf (see Section

2.2). The p.a.-unit cell containing four particles exhibits the same symmetry properties

as the p.a.-unit cell containing a single particle and therefore the mean matrix strain of

the large p.a.-unit cell is also independent of direction (see Section 3). The average

matrix strain 〈 〉e p a. .  exhibits a very weak dependence on the cluster factor Cf for both

particle fractions. The relative difference between 〈 〉e p a. .  in the unclustered state

(Cf = 0) (practically equal to 〈 〉e Esh ; see Section 4.1) and 〈 〉e p a. .  in the strongly

clustered state (Cf = 0.5 for c = 0.087 or Cf = 0.7 for c = 0.031) remains smaller than

0.2 % for E Ep m = 0.1 and E Ep m = 1, and increases to about 1 % if E Ep m = 10.

Therefore, it is concluded that the influence of clustering of misfitting particles on the

average matrix strain remains small.
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Fig. 5. Normalised mean square strain 〈 〉ehk
2 2/ ε  in the matrix, according to the p.a.-

unit cell description and according to the Eshelby-type description, versus

clusterfactor Cf for different values of E Ep m  in two crystallographic directions,

〈 〉10  and 〈 〉11 , at constant c = 0.087.
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Fig. 6. Probability distributions of matrix strains P(ehk/ε) in the 〈 〉10  and 〈 〉11

directions of normalised strain ehk/ε, according to the p.a.-unit cell description and

according to the Eshelby-type description, for a particle fraction of c = 0.087 with

E Ep m  = 1  in the most clustered state considered, Cf = 0.5. The average matrix

strain is 〈 〉 ≅ 〈 〉 =e ep a Esh. . ε ε  0.032.
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The mean squared strains are depicted in Fig. 5 as a function of the cluster

factor Cf for the case of c = 0.087 and E Ep m  = 0.1, 1 and 10. As clustering becomes

more pronounced 〈 〉e p a10
2

. .  increases, whereas 〈 〉e p a11
2

. .  decreases (with approximately

the same amount). Similar behaviour is observed for c = 0.031, but less distinct. The

increase of the difference between 〈 〉e p a10
2

. .  and 〈 〉e p a11
2

. .  implies that the orientation

dependence becomes more pronounced for increasing clustering. This can also be seen

in the probability distribution of matrix strains that is shown for c = 0.087 and Cf = 0.5

in Fig. 6. As compared to the unclustered state (cf. Fig. 3), for P e p a( ) . .11 ε  the

contribution of the strains close to zero has increased significantly, and the probability

distribution has become narrower as exhibited by the smaller value for the variance

〈 〉e p a11
2

. .  (see Fig. 5). As compared to the unclustered state P e p a( ) . .10 ε  has become

broader, since the contribution of the shoulder at e ε ≈ 0 3.  has become more

pronounced; see also the increase of 〈 〉e p a10
2

. .  with increasing Cf (Fig. 5).
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Fig. 7. Comparison between the iso-strain contour plots of the 〈 〉10  and 〈 〉11  strain

distributions with Cf = 0.5 at a particle fraction c = 0.087 for a quarter of a p.a.-unit

cell. Contour levels are | |′e ε  = 0, 0.1, 0.2, 0.4 and 0.6 with signs as indicated. These

figures show the deviatoric strains, see Eq. (6).

The 〈 〉10  and 〈 〉11  iso-strain contour plots for a quarter of the large p.a.-unit

cell ( 4 4L L× ; cf. part I) in the most clustered state considered, Cf = 0.5 with

c = 0.087, are presented in Figs. 7a and 7b. The effects of clustering are clearly visible

upon comparing these figures with Figs. 4a and b for the unclustered state. Due to

clustering, the shape and symmetry properties of the strain field change. In particular,

in between the clustered particles, significant interaction distorts the strain

distribution.

′e10 ε

a)

′e11 ε

b)
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5. Line-Profile Calculations

In line with the previous discussion of the strain distributions {h0} and {hh} matrix

diffraction line profiles have been computed for values of the particle-matrix misfit ε
between 0 % and 5 %. For each series of line-profile simulations, line profiles have

been calculated for three orders of reflection (i.e. {10}, {20}, {30} and {11}, {22},

{33}).

5.1 Role of mechanical properties

The effect of the mechanical properties of particle and matrix on 〈 〉ehk XRD  and S hk
ε

has been studied by varying ε for constant values of Ep/Em (= 0.1, 1 and 10) and

c = 0.087. The simulations have used 2 2N N×  = 240 240×  atoms per p.a.-unit cell,

which corresponds to a particle radius of NR = 40 (cf. Section 2.2.1 of part I).
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Fig. 8a. The average matrix strains as a function of ε for the three values of Ep/Em for

c = 0.0873 and 2 2 240 240N N× = × . The average strains 〈 〉ehk XRD  have been

calculated from the centroid shift of the {hk} reflections. These strains can be

compared with 〈 〉e p a. .  calculated from the p.a-unit cell strain field, and with 〈 〉e Esh

calculated from the approximate analytical strain field. The mean strains 〈 〉e p a. .  and

〈 〉e Esh  are independent of {hk} and practically equal (see text).
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e

e

e
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hk Esh

hk p a. .
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Fig. 8b. The average matrix strains derived from the line profiles, 〈 〉ehk XRD , versus

the average matrix strain, according the the p.a.-unit cell description, 〈 〉e p a. . .
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Fig. 8d. The standard deviation of the strain contribution to the broadening of the {hk}

reflection, S hk
ε , as function of 〈 〉e Hhk p a c

hk2
0. . , .

The variation of 〈 〉ehk XRD  with ε is shown in Fig. 8a, together with

corresponding curves for 〈 〉e p a. .  and 〈 〉e Esh  calculated according to Section 3.1.

Clearly, for all cases, 〈 〉ehk XRD  increases with ε in a nonlinear fashion while 〈 〉e p a. .

and 〈 〉e Esh  scale linearly with ε. The 〈 〉hk  dependence of  〈 〉ehk XRD -curves, for a

specific value of Ep/Em, is weak. Plotting 〈 〉ehk XRD  versus 〈 〉e p a. .  for all sets of

〈 〉ehk XRD -curves (see Fig. 8b) shows that 〈 〉 〈 〉e ehk XRD hk p a. .  is practically

independent of Ep/Em. The systematic difference between 〈 〉ehk XRD  and 〈 〉e p a. .  will be

discussed in Section 5.5.

The variation of S hk
ε  withεHc

hk
,0  is shown in Fig. 8c. As compared to Fig. 8a,

εHc
hk
,0  is used as abscissa instead of ε, to account for the dependence on the order of

reflection (cf. Eq. (5)). An almost linear dependence of S hk
ε  on εHc

hk
,0  is observed5.

The strain broadening strongly depends on the diffraction direction 〈 〉hk  and on

Ep/Em. Since 〈 〉ehk p a
2

. .  scales with ε and Ep/Em (cf. Section 4.2), the linear

dependence of S hk
ε  on εHc

hk
,0  in Fig. 8c suggests that S hk

ε  is roughly proportional with

                                                          
5 Small deviations of linearity observed for 0 0 020≤ ≤εHcentr

hk
, . , and in particular for small

2 2N N× (not shown here), are attributed to truncation of tails of the intensity distribution: overlap
with neighbouring reflections is more pronounced.

〈 〉e Hhk p a c
hk2

0. . ,

S hk
ε
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〈 〉ehk p a
2

. . . As shown in Fig. 8d, this holds indeed: S hk
ε  is proportional with

〈 〉e Hhk p a c
hk2

0. . , , for all values of Ep/Em (see discussion in Section 5.5).

5.2 Role of particle fraction

The dependences of 〈 〉ehk XRD  and S hk
ε  on ε have been studied for various values of

the particle fraction c for Ep/Em = 10 and NR = 40. In order that the particle size NR

remains constant, while c is varied, the number of atoms within a p.a.-unit cell,

2 2N N× , has been changed accordingly.

The results of the line profile calculations are presented in Figs. 9a and 9b.

Obviously, the slope of each set of 〈 〉ehk XRD  vs ε lines and each set of S hk
ε  vs εHc

hk
,0

lines increases with c, because the number of particles per unit area and thus the

deformation of the matrix increases with c, while the particle size remains constant.

Similar increases with c have been observed for 〈 〉ehk p a. .  and 〈 〉ehk p a
2

. .  in Figs. 1

and 2, respectively. Indeed, plotting of 〈 〉ehk XRD  vs 〈 〉ehk p a. .  and S hk
ε  vs

〈 〉e Hhk p a c
hk2

0. . ,  for various values of c the same relations are observed as in Figs. 8b

and 8d, respectively.

5.3 Role of p.a.-unit cell size

The influence of the p.a.-unit cell size on 〈 〉ehk XRD  and S hk
ε  is studied as a function of

ε for the {11} reflection and with Ep/Em = 1 and c = 0.087. An increase in the p.a.-unit

cell size 2 2L L×  at constant a and c implies an enlargement of 2 2N N×  and 2NR.

The results of this series of line profile calculations are presented in Figs. 10a

and 10b. It is important to note that since the displacements are sampled from a

continuum displacement field, the differences in position and width of the intensity

distribution for different 2L are a result of the diffraction process only.

However, it has been shown in part I that  "size" broadening of a line profile

(as observed at ε = 0) depends on the distances in the matrix between the particles,

which at constant c are proportional to 2N (part I; Section 3.4). Therefore S hk
ε  at ε = 0

is distinctly different for different 2N (see Fig. 10b). Thus, it can be expected that the

influence of the number of atoms in the p.a.-unit cell on the mean matrix strain as

function of ε and on the slope of the strain standard deviation as function of εHc
hk
,0  is

small. This is confirmed by the results in Figs. 10a and 10b. As, for increasing 2N, the

strain field within the p.a.-unit cell is sampled at an increasing number of locations,

minor differences in 〈 〉ehk XRD  and S hk
ε  can occur as a consequence of differences in

the sampling density.
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Fig. 9a. The average matrix strains, 〈 〉ehk XRD , 〈 〉e p a. .  and 〈 〉e Esh , as a function of ε
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5.4 Role of clustering

The influence of clustering of the particles on 〈 〉ehk XRD  is very small. Only in the most

clustered state considered with Cf = 0.5 and with Ep/Em = 10, c = 0.087 and

4 4N N× = 240 240×  a difference of about 1.1 % is observed in 〈 〉e XRD11 .

The effect of clustering becomes clearly visible, however, in S hk
ε . For

example, it follows from Fig. 11a that Sstrain
33  decreases significantly due to clustering.

Yet, again plotting Sε
33  vs  〈 〉e Hp a c33

2
0

33
. . ,  yields a straight line (cf. Figs. 8d and 11b),

also in the present clustered state.

5.5 Concluding remarks on line profile centroid and variance

The relation between line width and 〈 〉e Hhk p a c
hk2

0. . ,  (cf. Eq. 5) has been studied

extensively in Ref. [11] for a material containing a distribution of defects, such as

dislocations or misfitting particles. It was shown that the type and the distribution of

defects within a material determine this relation. In case of a periodic distribution of

defects, each associated with the same type of strain field (Cauchy-type: ε ~ 1/r2, with

r the distance from the defect, a possible approximative model for screw dislocations)

it followed that there was a linear relation  between the integral breadth, as a measure

of line-profile width, and 〈 〉e Hhk p a c
hk2

0. . , . The present work demonstrates that a

similar result holds for misfitting particles (based on an exact elaboration of the

misfit-strain fields).

Minor effects such as (i) the nonlinear dependence of 〈 〉ehk XRD  on 〈 〉e p a. .  and

(ii) the departure of the slope of S hk
ε  vs 〈 〉e Hhk p a c

hk2
0. . , -lines from unity (cf. Eqs. 4

and 5) can be understood as true effects made visible here due to the exact calculation

of the diffracted intensity, thereby avoiding approximations that are usually made (e.g.

[1, 12]).

In diffraction calculations two simplifications are commonly made6:

(i) The inner product of the diffraction vector H with the vector indicating the

displacement of each atom (mn) is approximated by the length of the diffraction

vector indicating the Bragg reflection of the reflection considered, HB, and the

component of the displacement field of atom mn in the direction of HB.

(ii) The usual procedure to obtain a powder diffraction line profile from the

intensity distribution in reciprocal space of a single powder particle employs the so-

                                                          
6 In textbooks on X-ray diffraction (e.g. Warren [1]) this approximation is carried out by replacing the
continous variable in reciprocal space, h3, by the order of reflection, l, of a {00l}-type reflection and
taking the component of the displacement of unit cell m along the h3-axis,  Zm.
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called tangent plane approximation instead of the rotation procedure as used in this

work (see Section 2.2.3 in part I).

These effects are illustrated in Figs. 12a and 12b showing exact and

approximate results for 〈 〉ehk XRD  and S hk
ε  of a {33} reflection, calculated for the case

of an unclustered p.a.-unit cell with Ep/Em = 1, c = 0.087, 2 2N N× = 60 60×  and

ε = 0 to 0.05. The intensity distribution calculated using the approximation (i) deviates

from the exact one far away from the position of the matrix Bragg reflection in

reciprocal space. The exact calculation of the diffracted intensity shows a slight

asymmetry for the tails of the powder diffraction line profile, in particular for

increasing values of ε. This causes 〈 〉ehk XRD  to be nonlinearly dependent on ε and

thus 〈 〉ehk p a. . (see Figs. 8b, 9b, 10a).

The consequence of the use of the tangent plane approximation (i.e.

approximation (ii)) is visible also in Fig. 12a. The larger the broadening the larger the

influence of this approximation (see also discussion in part I).
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Fig. 12a. Average matrix strains calculated from {33} diffraction-line profiles as a

function of the average matrix strain according to the p.a.-unit cell description,

〈 〉e p a33 . .  for Ep/Em = 1, c = 0.087, 2 2N N× = 60 60×  and ε = 0 - 0.05. The {33}

line profiles have been calculated applying either the exact formulae leading to,

〈 〉e XRD33 , or the approximate formulae for the intensity distribution in reciprocal

space, leading to 〈 〉e XRD
approx

33  (see text); these intensity distributions have been

subsequently projected on the diffraction vector either by the tangent procedure

(dashed line) or the rotation procedure (solid line).
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Fig. 12b. Sε
33  and S approx

ε
33  as a function of 〈 〉e Hp a c33

2
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33
. . , . See caption of analogous

Fig. 12 a.

As both approximations influence in particular the asymmetry in the observed

intensity distribution, albeit slightly, the effect on the centroid is larger than on the

variance. This can be understood as follows. If the intensity distribution is divided into

an even part and an uneven part with respect to the position of the Bragg reflection

considered, then it follows from Eqs. (2) and (3) that the centroid is sensitive to the

uneven part of the intensity distribution, whereas the variance is, to a large extent,

sensitive to the even part of the intensity distribution; a small effect of the uneven part

on the variance remains since the variance is determined with respect to the centroid,

cf. Eq. (3). Therefore, the influence of the approximations used is most clearly visible

in the centroid of the intensity distribution.

6. Conclusions

(i) The mean strain of, and the centroid of a diffraction line profile from, an isotropic

matrix containing circular misfitting inclusions, that are not severely clustered, can be

well calculated adopting an Eshelby-type description for the strain field of a single

〈 〉e Hp a c33
2

0
33

. . ,

S

S approx

ε

ε

33

33 
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misfitting particle, i.e. ignoring particle misfit-strain field interaction and using an

effective radius for the matrix surrounding the single particle.

(ii) The probability distribution of matrix strains and the diffraction-line broadening

due to strain cannot be calculated reliably from an Eshelby-type approach. More

accurate calculations of the strain field in the matrix may be required, for example

using a finite element analysis.

(iii) The centroid of a diffraction line profile of the matrix is practically linearly

related to the mean strain of the matrix.

(iv) The strain broadening in reciprocal space of a diffraction-line profile of the matrix

is practically linearly related to the product of the linear misfit of particle and matrix

and the order of reflection. The standard deviation of the only strain broadened part of

the intensity distribution (in reciprocal space), as a measure of line profile width,

equals, to a high degree of accuracy, the product of the mean square strain in the

direction of the diffraction vector and the centroid of the intensity distribution.

(vi) Clustering of particles enhances the direction dependence of the root mean square

strain and the diffraction-line broadening significantly, but the mean strain and the

centroid of the diffraction line profile are hardly affected.
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Appendix A
Directional independence of mean matrix strain 〈 〉ehk p.a.

The mean strain in the matrix in the direction of an arbitrary vector n = (cos , sin )φ φ ,

determined by the angle φ , as defined in Fig. A. 1, is equal to

〈 〉 =
∫∫

∫∫
e

e x y dxdy

dxdy
A

A

m

m

n

n ( , )

 (A. 1)

with Am the matrix part of the p.a.-unit cell and with e x yn ( , )  the strain in the

direction of n at location (x,y), which is related to the components εij of the strain

tensor by
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ε ε φ ε φ φ ε φn = + +11
2

12 22
22cos cos sin sin . (A. 2)

If the strain tensor at every position in the matrix is known, the mean strain is

readily calculated from Eqs. (A. 1) and (A. 2). However, using the symmetry

properties of the p.a.-unit cell it can be shown that the mean matrix strain is

independent of the direction of n and equal to the hydrostatic strain of the matrix.

Therefore, the mean matrix strain is now calculated by separating the calculation into

(i) the determination of the average strain of a set of selected points and (ii) the

integration over all such sets. An example of a set of selected points A, B, C and D is

shown schematicly in Fig. A.1.  If the strain tensor is known at A, the strain tensors in

points B, C and D (cf. Fig. A.1), located symmetrically with respect to the symmetry

lines x = 0 and x = |y|, are related to the strain tensor in point A by

B

C

D

B A B A B A

C A C A C A

D A D A D A

: ; ;

: ; ;

: ; ;

    

    

    

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

11 22 22 11 12 12

11 22 22 11 12 12

11 22 22 11 12 12

= = =

= = = −

= = = −

(A. 3)

φ

 x = y  x = -y

A

B C

D

n

x

y

Fig. A.1. Schematic drawing of the p.a.-unit cell and symmetry lines x = 0, y = 0 and

x = |y|. Point B is located symmetrically to A with respect to x = –y. Points C and D

are located symmetrically to B and A, respectively, with respect to x = 0. The angle

between the x-axis and an arbitrary unit vector n is defined as φ. The directions of the

shear components of the strain tensors in the points A, B, C and D are indicated.
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The average strain of this set of points in the direction of n is equal to:

〈 〉 = +e ABCD
A A

n
1

2 11 22( )ε ε (A. 4)

which is equal to the hydrostatic strain in A, B, C and D.

Subsequently, the mean matrix strain follows from averaging over the results

of all sets of points such that the entire matrix of the p.a.-unit cell is covered. Since for

all other sets the average strain is also independent of n and equal to the hydrostatic

strain in the points considered, the mean matrix strain 〈 〉e  is (i) independent of the

direction of  n, and thus independent of the diffraction direction 〈 〉hk  and (ii) equal to

the hydrostatic strain of the entire matrix of the p.a.-unit cell.

Appendix B
Strain field for circular inclusion in circular matrix

The components of the rotationally symmetric strain field in particle and matrix, εr, εt,

εrt = εtr = 0 (r and t denoting the radial and tangential directions, respectively)

pertaining to a misfitting circular particle (radius Rp, Young's modulus Ep, Poisson's

ratio νp) placed centrally in a circular matrix (radius Rm > Rp, Young's modulus Em,

Poisson's ratio νm) are given in Ref. [13]. The derivation is limited to the case where

νm = νp = ν.

The strain field in the precipitate ( r Rp≤ ) is uniform and can be written as

ε ε εr
p

t
p

p mQ E E c= = ( , ) , (B. 1)

where c R Rp m= 2 2  and ε denotes the linear misfit at the particle/matrix interface and

where

( )
{ }( )

{ }( ) ( )( )Q
E

E
c

E E c c

E E c c
p

m

p m

p m
( , ) =

+
−

+ −
− + + −

− + − − −











1
2

1
1

1 1 2
1 2 1 1

1 2 1 1 2 1

ν
ν

ν
ν

ν ν
.

(B. 2)

The strain components in the matrix read ( R r Rp m< ≤ )
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ε ε
ν

νr
m

r
p p

r
c R r

c
( )

( )

( )
=

− −
− +

1 2

1 2 1

2 2

, (B. 3)

ε ε
ν

νt
m

r
p p

r
c R r

c
( )

( )

( )
=

− +
− +

1 2

1 2 1

2 2

. (B. 4)

The strain components in the matrix depend linearly on ε through the precipitate strain

ε r
p  given in Eq. (B. 1). Therefore, an effective linear misfit parameter ε eff  can be

defined as follows

ε ε ε εeff r
p

t
p

p mQ E E c= = = ( , ) . (B.5)
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Abstract

A new method has been developed to determine the misfit of disc-shaped precipitates in a

matrix using Transmission Electron Microscopy (TEM). The method is applicable to

specimens containing a high precipitate density, where the classical TEM method, based on

the extent of the precipitate diffraction contrast cannot be applied. The new method is based

on evaluation of the positions of extrema in the intensity distribution due to misfitting

precipitates both in bright field and dark field. A model system, consisting of a single disc-

shaped misfitting precipitate placed centrally in a thin specimen, has been studied first. The

dynamical theory of electron diffraction has been adopted for a four beam case. The contrast

lobes in bright and dark field images have been calculated as a function of, in particular, the

particle radius, the foil thickness and the particle thickness. Simultaneous fitting of calculated

bright and dark field diffraction contrast images to the experimental ones leads to

determination of the precipitate misfit, and the local thickness of the specimen foil. The

method has been illustrated for a nitrided Fe-2 at. % V alloy with small disc-shaped VN

precipitates and has led to a consistent interpretation in terms of particle size and misfit upon

precipitation. The extent of elastic accommodation of misfit has been verified using High

Resolution Electron Microscopy (HREM). The foil thickness values determined by

diffraction contrast analysis agree well with independently obtained corresponding data. In

addition X-Ray Diffraction (XRD) line profiles of the specimes have been recorded. The

observed shifts and broadenings of the XRD profiles support the results obtained using TEM.



68 Chapter 4

1. Introduction

Small misfitting particles/precipitates in a matrix can enhance the mechanical

properties to a large extent. The increases of, for example, the yield strength and

hardness are dependent on the size and shape of the precipitate particles and, in

particular, on the (volume) misfit between the matrix and the particle [1]. This

particle-matrix misfit causes a strain field in both the particle and the matrix that

influences the motion of dislocations. To understand material behaviour it is therefore

important to obtain quantitative information about the size, the shape and the misfit of

the particles introduced.

Several experimental techniques exist that enable the study of small misfitting

particles in a matrix, from which Transmission Electron Microscopy (TEM) and X-

Ray Diffraction (XRD) are the most important ones. The particle-matrix strain field

causes deformation of the matrix lattice which in TEM gives rise to the appearance of

contrast lobes around the misfitting particle both in bright field (BF) and dark field

(DF) images [2,3]. In the case of XRD the position, the shape and the width of an

{hkl} line profile change [4, 5].

The classical method to obtain a quantitative estimate of the particle-matrix

misfit of spherical or disc-like particles using TEM is due to Ashby and Brown [2,3].

This method is based on measurement of the width of the contrast image with respect

to the intensity of the background. However, this method is unreliable, as shown in

this paper, for the determination of the particle-matrix misfit of particles located in

thin foils if (i) a foil thickness occurs smaller than approximately four to five times the

extinction distance (for such foils the influence of the foil thickness on the image

width cannot be neglected; see also Fig. 2) and/or if (ii) significant overlap occurs of

the contrast lobes of neighbouring misfitting particles and the intensity of the

background cannot be measured accurately.

The present work proposes and tests an alternative method that does not have

the limitations of the Ashby and Brown method. The strain contrast is characterized

by the distance of the maximum or minimum intensity of the contrast lobes in BF and

DF to the centre of the misfitting particle. Full BF and DF contrast images are

calculated and compared with experimental ones. Further, since it is often difficult to

realize a “two-beam” case of electron diffraction for thin specimen foils (as in the

earlier method), a more general “four-beam” case is adopted here.

The method has been applied to the case of a nitrided Fe-2 at.% V alloy

containing a high number density of small disc-shaped VN precipitate particles

exhibiting large misfit with the ferrite (α-Fe) matrix.
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2. Calculated BF and DF diffraction contrast images

2.1 Theoretical background

The calculation of the diffraction contrast of misfitting particles is carried out using

the following assumptions. (i) The strain field contrast can be adequately calculated

using the dynamical theory of electron diffraction considering a four beam case (cf.

Section 4.1). The theory is briefly presented in Section 2.1.1. (ii) The disc-like or

penny shaped particles are embedded in an elastically isotropic matrix with a misfit in

the direction perpendicular to the disc plane only; there is no misfit in the direction

parallel to the disc plane. (iii) It is assumed that the displacement field of one

misfitting particle in an infinitely large matrix is a sufficiently accurate description of

the displacement field close to a misfitting particle in a matrix having a high number

density of such particles. The displacement field is briefly presented in Section 2.1.2.

2.1.1 Dynamical theory of electron diffraction

The basis of the computation of the images in BF and DF is the dynamical theory of

diffraction contrast in the form developed by Howie and Whelan [6]. A specimen of

thickness t is divided into columns along the z-axis of an orthogonal xyz-coordinate

system, see Fig. 1. A four beam case is considered: Φ0, Φ–g, Φg and Φ2g indicate the

amplitudes of the direct beam and three diffracted beams. The diffraction vectors g, –g

and 2g are perpendicular to the z-axis. The coupling of Φ0, Φ–g, Φg and Φ2g as a

function of depth z in the crystal is described by the following coupled differential

equations [6, 7]

d

dz
i

i s s zk

j kj

j j k j k
Φ

Φ
g

g gg
g g g g g u= − + − ⋅

−
∑

π
ξ

πexp( [( ) ( ) ])2 . (1)

The change of each amplitude Φ gk
 in a thin slab of thickness dz, d dz

k
Φ g  with

gk = –g, 0, g and 2g for k = 1, 2, 3 and 4, consists of the sum of the contributions of all

four amplitudes. For each amplitude a phase factor depending on the deviations from

the Bragg positions, s–g, s0, sg, s2g, and on the displacement field caused by the

misfitting particle, u (see next Section), is taken into account. In these equationsξg gj k−

represents the complex extinction distance of gj – gk, i.e. of the "incident" beam gk that

diffracts towards the diffracted beam gj. The effect of inelastic scattering is

incorporated by replacing 1 ξg  by 1 ξ ξg g+ ′i  where g = gj – gk [2, 3, 7].
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The amplitudes at the bottom of the specimen are obtained by solving this set

of differential equations with the boundary conditions Φ0 = 1 and Φ–g = Φg = Φ2g = 0

at the top of the specimen. Subsequently, the amplitudes of each beam are multiplied

with their corresponding complex conjugates to yield the intensities.

R

+y

+z

VN

t

g

u

b

+x

Fig. 1. Sch

In order to simplify the calculation a location in the (distorted, experimental)

specimen is chosen within a bright bend contour in the dark field image obtained with

diffraction vector g. There, sg = 0 and s0 = 0 and s–g = s2g = s, where s follows from

straightforward geometric analysis in reciprocal space

small
dislocation loop
at (x',y',z')

(x,y,z)

Fig. 1. Schematic drawing of a misfitting particle of radius R in the middle of a foil of

thickness t and located at the origin of an xyz-coordinate system. The misfitting

particle is represented by a collection of small prismatic dislocation loops with

Burgers vector b normal to the dislocation plane dy'dz'. Each such dislocation causes

a displacement field du within the matrix. The total displacement field at a point

(x,y,z) is equal to the sum of the contributions of all dislocation loops making up the

particle. The diffraction contrast images have been calculated dividing the specimen

into independently diffracting columns parallel to the z-axis. Each column represents

one pixel of the simulated image. Diffraction vector g is oriented perpendicularly to

the misfitting particle.
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s g g= −




 − −







1 1
2

1 3
22

2

2

2

λ λ
(2)

 with λ the electron wavelength and g = |g|.

2.1.2 Displacement field of a misfitting particle

The displacement field induced in the matrix by a misfitting disc-shaped particle can

be calculated by representation of the particle by a collection of prismatic dislocation

loops placed parallel in the plane of the disc at the location of the disc in an infinitely

large matrix as shown schematically in Fig. 1 [2, 3] (matrix assumed to be elastically

isotropic; misfit only perpendicular to the disc). Each dislocation loop has an area

dy'dz' (disc parallel to z- and y- axes) and a Burgers vector b parallel to the loop

normal. Note that the operating diffraction vector is oriented perpendicularly to the

disc-shaped particle. This Burgers vector can be interpreted as follows: if the particle

(disc) consists of n lattice planes with interplanar distance   dpart
hkl

 and the matrix at the

location of the particle in its hypothetical absence would consist of an equal number of

lattice planes with interplanar distance     dmatr
h'k ' l'  parallel to the lattice planes of the

particle/disc, then, if a coherent interface exists between the matrix and the particle,

the length of b equals

b n d dpart
hkl

matr
h k l= −( )' ' '  (3a)

The thickness of the disc-shaped particle, tpart, is defined as t ndpart part
hkl≡ . The relation

between tpart  and b is then given by

t
d

d d
bpart

part
hkl

part
hkl

matr
h k l=

−( )' ' ' . (3b)

The interplanar distances of the lattice planes of the particle and the matrix,  dpart
hkl  and

    dmatr
h'k ' l' , respectively, are calculated straightforwardly from the respective lattice

constants of the particle and the matrix.

The elastic displacement field at a point (x,y,z) due to a single prismatic

dislocation loop located at (x',y',z') in an isotropic, infinitely large matrix with the

Burgers vector parallel to the x-axis is given by [8]
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with

r x x y y z z2 2 2 2= − + − + −( ' ) ( ' ) ( ' ) (4b)

and ν being Poisson's ratio. The total displacement field of the misfitting particle is

equal to the sum of the displacement fields of the individual prismatic dislocation

loops making up the particle with radius R,

u u
zy'

= ∫∫ d
'

(5)

In diffraction contrast calculations the displacement field is usually simplified

by splitting it up into a dilatation component and a rotation component [7]. The

contribution of the dilatation component to image contrast can be shown to be

negligibly small in TEM [7]. Therefore only the contribution of the rotation

component to image contrast is considered in this work.

2.1.3 Procedures of strain field contrast image calculation

The intensity distribution in a BF or DF image at the bottom of a sample has been

calculated using a modified version of the TEM software package SIMCON [9], that

has been adapted here to allow calculations for four beam cases. The specimen is

subdivided in independently diffracting columns perpendicular to the operating

diffraction vectors (cf. Section 2.1.1). Each column represents one pixel of the

simulated image. The size of the image (width times height) and the desired resolution

of the image, i.e. the number of pixels per nanometer, determine both the total number

of columns used for the specimen and the lateral size of each column (i.e. the size of

the column in the directions parallel to the x-axis and y-axis). For every column Eq.

(1) is solved numerically, with the displacement field according to Eqs. (4) and (5),

using a fifth-order Runge Kutta scheme [10] with a maximum relative integration

error of 1.10-6. In analogy with Howie and Whelan [6] the set of equations describing
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the coupling of the four beams (i.e. Eq. (1)) is rearranged in order to simplify the

numerical integration (see Appendix).

2.2 Results of BF and DF diffraction-contrast calculations

2.2.1 Characterization of the contrast image; the image width

A misfitting particle/disc is considered which is located in the middle of an 80 nm

thick specimen with the plane of disc perpendicular to the surfaces of the foil and

parallel to (100)α-Fe. A BF and a (200)α-Fe centered DF image7 were calculated for such

a misfitting particle with radius R = 7.5 nm and Burgers vector length b = 0.35 nm

(see Section 2.1.2). The displacement field caused by the particle is obtained from

Eqs. (4) and (5) by discretizing the particle into N = 156 equal dislocation loops and

with the Poisson ratio of α-Fe equal to να-Fe = 0.3. The extinction distances

correspond to an acceleration voltage for the electrons of 150 kV in α-Fe:

ξg = 48.47 nm, ξ2g = 152.0 nm and ξ3g = 39.59 nm [11]. The lattice constant of the α-

Fe-matrix and the VN are aα-Fe = 0.28664 nm and aVN = 0.41392 nm, respectively,

[12]. The deviation parameter w = sξg  of the beams –g and 2g is calculated using Eq.

(2) as w–g = w2g = 8.544. The effects of inelastic scattering are included by setting

ξ ξ ξ ξ ξ ξ ξ ζg g g g g g g′ = ′ = ′ = ′0 2 2 3 3 = 0.1 [2, 3, 13, 14].

Examples of thus calculated BF and centered DF images are depicted in Figs.

2a and b. Contrast lobes occur at both sides of the particle: bright lobes in BF and dark

lobes in centered DF. The finely structured vertical band of alternating dark/light

contrast through the centre of the image, precisely at the location of the particle, is an

artefact of the calculation procedure: it is caused by the approximation of the particle

through a finite number of dislocation loops.

The intensity distributions through the centres of the discs and perpendicular to

them are shown in Figs. 2c and 2d. In BF the distances of the maximum intensities in

the right-hand and left-hand lobes (bright lobes) to the centre of the particle are

indicated as dr
BF  and d l

BF , respectively. Correspondingly dr
DF  and d l

DF  are used

with respect to the minimum intensities in DF (dark lobes) in Fig. 2d. The parameters

dr
BF , d l

BF , dr
DF  and d l

DF  are indicative for the width of the diffraction strain

contrast image of the misfitting particle.

                                                          
7 A centered dark field image is computed if g is replaced by –g [7].
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Fig. 2. Simulated BF (a) and (200)α-Fe centered DF (b) images of a misfitting VN

particle (disc) of radius R = 7.5 nm and Burgers vector b = 0.35 nm in the middle of a

80 nm thick α-Fe-foil with operating reflections ( 2  0 0)α-Fe, (000), (200)α-Fe and (400)α-

Fe. The image size is 75 75×  nm2. Below each image the intensity distribution along a

horizontal line through the centre of the image is shown for the BF (c) and centered

DF (d) images. The particle-lobe distances for BF, d l
BF  and dr

BF , and centered DF,

d l
DF  and dr

DF , have been indicated. In addition, the image width in BF, defined

according to Ashby and Brown [2, 3] as the distance along the line through the centre

of the particle where the intensity differs more than 20 % of the background intensity,

d A B& , is depicted in Fig. 2c.

2.2.2 Parameters determining the image width

A number of simulations was carried out to investigate the influence of several

parameters on the DF and the BF images, such as the foil thickness, the particle/disc

radius, the effective particle thickness (i.e. the particle Burgers vector, see Section

d l
BF dr

BF

d A B&
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2.1.2) and the depth location of the particle in the specimen foil. Subsequently, the

influence of a neighbouring particle on the image width was studied.

2.2.2.1 Foil thickness

The thickness of the foil, t, was varied from 50 nm to 200 nm in steps of 2.5 nm,

while the particle was positioned in the middle of the foil and the Burgers vector

length b and particle radius R were kept constant: b = 0.35 nm and R = 7.5 nm. The

distances dBF and dDF to the centre of the particle of each bright lobe in BF and each

dark lobe in DF, respectively, are shown in Fig. 3. The so-called 20 % image width in

BF, defined by Ashby and Brown [2, 3] as the distance along the line through the

centre of the particle where the intensity differs more than 20 % of the background

intensity, has also been indicated. 
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Fig. 3. Particle-lobe distance in BF images (bright lobe) and in (200)α-Fe centered DF

images (dark lobe) of a misfitting VN particle of radius R = 7.5 nm and Burgers

vector b = 3.5 nm, in the middle of an α-Fe foil as a function of foil thickness, t. Full

BF and centered DF images at each specimen thickness marked by the cross filled

circles on the abscissa are shown in Fig. 4. The image width, defined according to

Ashby and Brown [2, 3] as the distance along the line through the centre of the

particle where the intensity differs more than 20 % of the background intensity,

d A B& , is depicted as a function of the specimen thickness in the upper part.

dr
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d

nm
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Clearly, the 20%-image width depends on the specimen/foil thickness, especially for t

< 100 nm ≈ 2ξg. Ashby and Brown did not consider the influence of the specimen/foil

thickness on the image width for foils with a foil thickness t < 3.5ξg. Application of

the Ashby and Brown method for cases with t < 4ξg (≈ 200 nm; note that electron

transparent foils are usually very much thinner), without more ado, will lead to

erroneous results in the determination of the particle Burgers vector.

The results of the particle-lobe distance parameters dBF and dDF show a zig-zag

dependence as a function of the foil thickness, which can be understood considering

the series of BF and corresponding centered DF images shown in Figs. 4a-e. These

series correspond to the abscis values indicated with ⊗  in Fig. 3. Starting at t = 50 nm

the lobes move away from the particle centre for increasing t, cf. for instance Fig. 4a

with Fig. 4b. At some thickness, approximately t = 100 nm in this case, a second

bright lobe in BF and a second dark lobe in centered DF appears in between the

particle and the first lobe, cf. Fig. 4c. The lobe closest to the particle has been used to

determine dBF and dDF and therefore a step occurs in Fig. 3 (compare Fig. 3 and Figs.

4b, 4c and 4d), etc.

Since the particle is positioned in the middle of the foil and the deviation from

the Bragg position of g is taken to be zero (cf. Section 2.1.1), the lobes of the BF

image are always symmetric: dr
BF = d l

BF . The centered DF images are usually

asymmetric: d dr
DF

l
DF≠ .  It depends on the value of t whether the right or left dark

lobe is closest to the particle in the DF image.

2.2.2.2 Particle radius

The influence of the particle radius on the extent of the contrast lobes in BF and DF is

shown in Fig. 5 for a 80 nm thick specimen. On increasing the particle radius the

lobes move away from the particle. Below R = 2.5 nm it is difficult or impossible to

find a bright lobe for the BF images and a dark lobe for the centered DF images on

either side of the particle.

2.2.2.3 Particle Burgers vector

The Burgers vector in Eq. (4) represents the misfit of the particle relative to the matrix

(cf. Section 2.1.2). The change of the lobe extent for a range of Burgers-vector lengths

is shown in Fig. 6. With increasing Burgers-vector length the lobes move away from

the particle. For a Burgers vector-length between 0.45 nm and 0.5 nm a second lobe

develops for both the centered DF and BF images in between the particle and the first

lobe, and this explains the step in Fig. 6.
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e) t = 140 nm

ξg/t = 2.89

b) t = 80 nm

ξg/t = 1.65

c) t = 100 nm

ξg/t = 2.06

d) t = 120 nm

ξg/t = 2.48

a) t = 60 nm

ξg/t = 1.24

g

g

g

g
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Fig. 4. Influence of specimen thickness on BF (left column) and (200)α-Fe centered DF

images (right column) of a misfitting VN particle of radius R = 7.5 nm and Burgers

vector b = 0.35 nm in the middle of an α-Fe foil. Thickness t relative to ξg, t ξg  has

been indicated. See also Fig. 3.
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Fig. 5. Influence of the particle radius R on the particle-lobe distances in BF and

(200)α-Fe centered DF images of a misfitting VN particle with Burgers vector b = 0.35

nm located in the middle of an 80 nm thick α-Fe foil.

2.2.2.4 Particle position

The influence of the vertical position (depth beneath the foil surface) of a particle in

the foil is shown in Fig. 7. The parameter ∆h indicates the vertical position with

respect to the middle of the foil (∆h = 0). The particle-lobe distances of the bright

lobes in BF and the dark lobes in centered DF are practically independent of ∆h,

although the full BF and centered DF images indicate a clear dependence on ∆h; only

if ∆h = 0 the full BF image is symmetric. For ∆h < 0, the same kind of results as for

∆h > 0 are obtained but the results of the BF left-hand lobe and the BF right-hand lobe

would have to be interchanged; the centered DF images are not dependent on the

direction of the particle shift (sign of ∆h).

It is concluded, when comparing full images of simulations and experiments

that as long as the experimental image in BF of the particle concerned is symmetric it

is justified in the simulation to assume that the particle is located in the middle of the

d l
DF

dr
DF

d BF
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foil; for an analysis based on dBF and dDF only, small deviations of the location/depth

of the particle from the middle of the foil are irrelevant.
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Fig. 6. Influence of the particle Burgers vector b on the particle-lobe distances in BF

and (200)α-Fe centered DF images of a misfitting VN particle of radius R = 7.5 nm

located in the middle of an 80 nm thick α-Fe foil.

2.2.2.5 Neighbouring particle; overlapping strain fields

Consider a two-particle system with one particle located at (0,0,0) and the other one at

(L,0,0). The particle discs of equal particle radius, R = 7.5 nm, and particle Burgers

vector, b = 0.35 nm are parallel and located in the middle of a 80 nm thick foil. The

change of the image width for a change of the interparticle distance L from 10 nm to

150 nm is shown in Fig. 8. Obviously, for small L distinct effects on dBF and dDF

occur. Note that dr
BF  is affected more than d l

BF  since the right lobe is located closer

to the neighbouring particle than the left lobe. A similar statement holds for the

corresponding DF lobes. For L > 30 nm, i.e. L larger than about 1.5 times the particle

diameter, the influence of the neighbouring particle has become negligible and the

particle lobe distances are equal to those of a single misfitting particle of equal radius

and particle Burgers vector (cf. Fig. 7 at ∆h = 0).

Thus, comparing images simulated on the basis of a single particle model with

experimental contrast images of systems containing a high number density of

misfitting particles, in the experimental images particles should be selected that (i) are

d l
DF

dr
DF

d BF
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Fig. 7. Influence of the particle location on the particle-lobe distances in BF and
(200)α-Fe centered DF images of a misfitting VN particle of radius R = 7.5 nm and
Burgers vector b = 0.35 nm located in an 80 nm thick α-Fe foil. The particle is
displaced upwards against the direction of electron motion by an amount ∆h (nm);
∆h = 0 corresponds to the middle of the foil.

 

10

8

6

4

2

0

pa
rt

ic
le

 lo
be

 d
is

ta
nc

e 
(n

m
)

1501251007550250
L (nm)

Fig. 8. Influence of the distance L of a second particle (disc) located at (L,0,0) on the
particle-lobe distances in BF and (200)α-Fe centered DF images of a misfitting VN
particle at (0,0,0). The particle radius, R = 7.5 nm, and the Burgers vector, b = 0.35
nm, of both particles are equal. The α-Fe foil is 80 nm thick.
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located at about 1.5, or more, times the particle diameter away from neighbouring

particles, and (ii) additionaly, exhibit symmetric contrast lobes in BF. The latter

criterion means that, additionaly, ∆h = 0. When the (projected) interparticle distance is

smaller, the influence of neighbouring particles can still be negligible if these particles

are situated at another height in the foil. Also for this case it holds that occurrence of a

symmetrical BF image of a single particle can be considered in general as indicative of

negligible influence of strain field overlap with neighbouring particles.

If the second particle at (L,0,0) is oriented perpendicularly with respect to the

first one at (0,0,0) (while remaining perpendicular to the foil surfaces), then the

displacements in the matrix caused by the second particle are directed perpendicularly

with respect to the displacements in the matrix from the first particle and also with

respect to the diffraction vector employed and therefore the effect of such a second

particle is negligible (cf. Eq. 1).

3. Specimen preparation

An α-Fe-2.2 at.% V solid solution was made through arc melting of 99.998 wt.% pure

α-Fe and 99.999 wt.% pure V in the correct ratio and subsequent annealing for 5 days

at 1225 ºC in an Ar-filled quartz ampul. The alloy composition was checked with

Electron Prope Micro Analysis: 0.4 at. % V is present as VO that developed during

the alloy production. In all further production steps the amount of VO remained

constant and therefore 1.8 at.% V is considered to be present initially in solid solution

and as VN after completed nitriding (see below).

A series of rolling and recrystallisation steps was applied to produce elongated

sheets of 200 µm thickness with crystallite sizes (optical microscopy) between 10 µm

and 60 µm. Small rectangular parts of size 1 cm ×  2 cm cut from the sheet were

polished and thinned to about 100 µm thickness using Kawamura’s reagent [15].

Next, these pieces, suspended with a thin Ni wire, were through nitrided in a vertical

quartz tube furnace at 793 K, 853 K or 913 K for 25 hours. A gas mixture consisting

of 99 vol.% H2 (99.95 % purity) and 1 vol.% NH3 (99.90 % purity) was used, yielding

a constant nitriding potential of 0.0102 atm-1/2 during the time of nitriding [16].

Micro-Vickers hardness measurements at cross sections of the nitrided specimens

confirmed that through nitriding had occurred.

X-ray diffraction analysis of the nitrided specimens was performed on a

Siemens 500 B diffractometer equipped with Cu-Kα radiation and a graphite

monochromator in the diffracted beam to select Cu-Kα radiation. The specimens were

attached magnetically onto a Si- 〈 〉510  single crystal substrate. The diffracted

intensities in the diffraction angle range of 20 -160 °2θ were recorded applying a 0.05
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º2θ stepsize and a 28 (s) counting time per step (yielding 15000 to 25000 counts at

{110} peak maximum depending on the specimen). During the measurement the

specimens were rotated about the specimen's surface normal.

From the nitrided material small circular discs of 3 mm diameter were drilled

that were polished with diamond paste (successively 3, 1 and 0.25 µm) to a thickness

of 20 µm. Subsequently, the specimens were jet-electrolytically polished in an acid

electrolyt (90 vol.% acetic acid, 10 vol.% perchloric acid) until perforation.

Transmission Electron Microscopy (TEM) was performed in a Philips CM30T

microscope operating at 150 kV. The low voltage of 150 kV (300kV is maximually

possible on the CM30T) was chosen to reduce the intensity of other than indicated

reflections in the systematic row …,-g, 0, g, 2g, …, as a low acceleration voltage

corresponds to a relatively large electron wavelength and a correspondingly relatively

small radius of Ewald's sphere. Selected Area Diffraction Patterns (SADP) as well as

BF's and centered DF's employing a (200)α-Fe reflection were recorded. At the SADP's

spots were observed at the location of the (forbidden) (100)α-Fe spots, which originated

most likely from the presence of Fe3O4 at the foil surface as grown after foil

preparation; see for a more elaborate discussion Ref. [17].

High Resolution Election Microscopy (HREM) images from the thin parts of

the foil were taken at 300 kV with the electron beam direction a few degrees away

from the [001]α-Fe zone axis, in such a way that a (110)α-Fe reflection was precisely in

the Bragg orientation. The objective aperture included the first-order reflections and

the transmitted beam.

All images and SADP's were recorded on photo negatives; for further

interpretation these were scanned using a commercially available scanning device

employing 600 dots per inch (dpi).

The thickness of the specimen foil was measured locally with the

contamination-spot separation method [18]. To this end, the vacuum of the

microscope was deteriorated deliberately by removing the cold trap, such that

contamination spots could be formed on both sides of the foil. The separation of the

spots was measured in projection for a series of different foil tilts leading to accurate

determination of the foil thickness at the location of the contamination spots.
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4. Fitting calculated diffraction contrast images to experimental
diffraction contrast images of VN in αα-Fe

4.1 Selection of experimental diffraction contrast images of misfitting particles

An overview of the distribution of VN particles in the α-Fe-matrix and the strain

contrast caused by their displacement fields in the α-Fe-matrix is shown in the BF and

the (200)α-Fe centered DF images shown in Figs. 9a and 9b for a specimen nitrided at

913 K. The specimen is oriented with the electron beam almost perpendicular to the

specimen foil surface and ~ 2 ° out of the [001]-direction of the parent α-Fe-lattice

and g = (200)α-Fe. This arrangement of the specimen is used throughout this work. The

corresponding selected area diffraction pattern is given in Fig. 9c. For the specimens

nitrided at 793 K and 853 K the contrast changes in the images were much less

distinct; see also discussion in Section 5.

The diffraction pattern of the 913 K specimen shows two very strong spots, the

transmitted beam and the (200)α-Fe-diffraction spot, and two less strong spots, the

(400)α-Fe and (200)α-Fe  diffraction spot. Streaks in the [100]α-Fe direction can be found

through the location of the {200}VN diffraction positions indicated by arrows in Fig.

9c. The elongated shape of these spots is caused by the small thickness of the disc-

shaped VN particles [19, 20] lying on (100)α-Fe lattice planes: measurement of the full

width at half maximum of both indicated {200}VN spots, in a way as usually carried

out in XRD [21], leads to an apparent VN particle thickness of 1.4 nm. Also VN

particles on other {100}α-Fe lattice planes (i.e. (010)α-Fe and (001)α-Fe) are present, but

these are not visible in the BF and the centered DF images since the corresponding

disc normals and the main matrix-lattice displacements are perpendicular to the

operating diffraction vector(s) (see also Section 2.2.2.5). Therefore, given a statistical

distribution of the VN particles over the three habit planes of type {100}α-Fe, only one

third of the total number of VN particles with their contrast lobes is visible in Figs. 9a

and 9b.

From the BF and centered DF images it is clear that the number density of VN

particles is very large. On the basis of the assumptions made in the model for the

image simulations (Section 2.1) and the calculated results (Section 2.2), in the

experimental images particles have been selected only when the following

requirements are met. (i) The particle should have close-to-symmetrical lobes in BF.

(ii) The particle should lie in the bright bend contour in the centered DF of g = (200)α-

Fe that corresponds to an exact realisation of the Bragg conditions. A possible

deviation from the Bragg position could not be assessed from analysis of Kikuchi
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 (a) BF          (b) centered DF

     (c)

Fig. 9. BF image (a) and (200)α-Fe centered DF image (b) of Fe-2 at. % V specimen

nitrided for 25 hours at 913 K at nitriding potential of 0.0102 atm-1/2. Small VN

particles are visible surrounded by contrast lobes. The corresponding diffraction

pattern (c), with an orientation that is compatible with Figs. 9a and b, shows the

direct beam and the (200)α-Fe, (400)α-Fe and (2 00)a-Fe diffraction spots. Some iron

oxide reflections from a thin oxide layer on the surface are visible, see also Section 3.

Furthermore, {200}VN streaks in the [110]α-Fe-direction are visible as indicated by the

arrows. The specimen is oriented with the electron beam almost perpendicular to the

specimen foil surface and ~ 2 ° out of the [001]-direction of the parent α-Fe-lattice

and g = (200).
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lines, since these could not be observed, possibly due to the straining of the matrix by

the large number of misfitting VN precipitates.

In this way three particles were selected, in the case corresponding to Fig. 9, of

which the contrast images are shown in BF and corresponding centered DF in Figs.

10-12. The average intensity distributions along a line perpendicular to the particles

and going through the centre of the particles are displayed in Fig. 13a for the BF

images and in Fig. 13b for the centered DF ones. The distributions have been averaged

over some distance (2.5 nm in total) perpendicular to this line to cancel out intensity

fluctuations caused by noise.

(BF)         (centered DF)

Fig. 10. BF and (200)α-Fe centered DF image of selected VN particle I.

(BF)         (centered DF)

Fig. 11. BF and (200)α-Fe centered DF image of selected VN particle II.
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(BF)         (centered DF)

Fig. 12. BF and (200)α-Fe centered DF image of selected VN particle III.

Table 1: Particle-lobe distances in BF (dr
BF  and d l

BF ; see Fig. 2) and corresponding

(200)α-Fe centered DF (dr
DF  and d l

DF ; see Fig. 2) images with estimates of errors for

three selected particles of an Fe-2 at.% V alloy nitrided at 913 K. Particle radii, R,

are measured from the ends of the corresponding contrast lobes in BF and DF and

averaged.

particle d l
BF dr

BF d l
DF dr

DF R

(nm) (nm) (nm) (nm) (nm)

I 5.7 ± 0.2 6.3 ± 0.2 5.3 ± 0.2 5.3 ± 0.2 9.0 ± 0.2

II 4.1 ± 0.2 4.1 ± 0.2 4.5 ± 0.2 3.6 ± 0.2 5.3 ± 0.2

III 5.3 ± 0.4 4.9 ± 0.2 4.5 ± 0.3 4.5 ± 0.2 7.5 ± 0.2

The distances from the maximum intensity in each bright lobe in BF to the

particle, dBF, and from the minimum intensity in each dark lobe in centered DF, dDF,

along with an estimate of the measurement errors, are presented in Table 1. Note that

in case of particle I and particle III dr
DF ≈d l

DF , whereas in case of particle II

dr
DF ≠ d l

DF . For each particle also the particle radius is given as an average from the

measured distances between the ends of the contrast lobes above and below the

particle in BF and in centered DF. This distance does not deviate much from the

length of the dark line(s) of contrast in the images at the location of the particle

(visible particles are perpendicular to the foil).
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Fig. 13. Normalised intensity distributions in BF (a) and (200)α-Fe centered DF (b)

obtained along the line through the centre of the selected particles I, II and III (cf.

Figs. 10, 11 and 12) and normalised with respect to the maximum and minimum

intensity within the range displayed.

4.2 Fitting of particle Burgers vector and foil thickness

The calculated images were fitted to the experimental ones by varying the values of t

and b; the value of R was set equal to the experimentally measured value (see Table

1). The fitting procedure ran as follows. (i) For wide ranges of values for the particle

Burgers vector b (0.2 nm to 0.5 nm in steps of 0.025 nm) and the specimen foil

thickness t (50 nm to 135 nm in steps of 2.5 nm) the intensity distribution was

calculated in BF and centered DF along the line perpendicular to the disc and going

through the centre of the disc and, subsequently, the values for the image widths d BF ,

d l
DF  and dr

DF  were determined for each intensity distribution. (ii) Then, contour lines

of constant image width in (t,b) space were constructed for the experimental values of

d BF , d l
DF , dr

DF . (iii) The intersection of the contour lines for d BF , d l
DF  and

dr
DF determined the t and b values for the particle concerned. (iv) Finally, full images
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were calculated for this combination of t and b values and were compared with the

experimental images. Only if sufficiently comparable images were obtained, the

corresponding values of t and b were accepted.

0.5

0.4

0.3

0.2

b (nm)

1251007550
t (nm)

Fig. 14. Contour diagram for particle I showing contour plots of the three

experimentally measured particle-lobe distances, dBF (5.7 ± 0.2 nm), dDFl (5.3 ± 0.2

nm) and dDFr (5.3 ± 0.2 nm) as a function of the Burgers vector, b, and specimen

thickness, t, for a simulated VN particle with size R = 9.0 nm. For each particle-lobe

distance three lines are drawn: a centre line, corresponding to the mean value of the

particle-lobe distance, and two outer lines on either side of the centre line

corresponding to the mean value plus or minus the respective error indicated above.

The contour diagram for particle I with R = 9.0 nm, shown in Fig. 14, indicates

several regions of intersection for the contour lines of constant image width, i.e. (t,b)

combinations with which values for the particle-lobe distances equal to the

experimental ones are observed both in BF and centered DF: (i) a narrow band of

overlap between (t,b) = (50 nm, 0.425 nm) and (t,b) = (75 nm, 0.325 nm), (ii) at (t,b) =

(102.5 ± 0.5 nm, 0.42 ± 0.02 nm) and (iii) at (t,b) = (120 ± 0.5 nm, 0.34 ± 0.02 nm).

Note that the discontinuities in Fig. 14 for the contrast lines are related to the

discontinuities for the particle lobe distance as a function of t in Fig. 3.

Thus, on the basis of this contour diagram a unique choice of (t,b) cannot be

made. Therefore, a number of full BF and DF images with (t,b) combinations

corresponding to the above indicated regions of intersection were computed and

dr
DF

dr
DFd l

DF d BF

d l
DF

d BF
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compared with the experimental ones. Representative results are shown in Fig. 15 for

a relatively thin foil (with (t,b) = (75.0 nm, 0.355 nm)), and a relatively thick foil

(with (t,b) = (121.2 nm, 0.342 nm)). Both simulated BF images resemble the

experimental image very well8. However, distinction can be made on the basis of the

centered DF images. The left-hand centered DF lobe for the case of the thick foil (Fig.

15b) does not appear as a curved contrast lobe as observed in the experimental image;

it merely shows a wide, diffuse zone without much contrast9. It is concluded that the

simulation for the case of the thin foil (Fig. 15a) is closer to reality. From a series of

simulations for a range of (t,b) values for the thin foil case, the following estimates

were eventually obtained for the foil thickness and the particle Burgers vector of

particle I: (t,b) = (73 ± 3 nm, 0.34 ± 0.02 nm). The value thus obtained for the foil

thickness agrees well with the value directly measured according to the contamination

spot method at the same location (cf. Section 3): tc = 80 ± 5 nm.

The contour diagrams for particle II and III with R = 5.3 nm and R = 7.5 nm,

respectively, are presented in Figs. 16 and 18. The same treatment as for particle I has

been applied to particles II and III. It was obtained for the foil thickness and the

particle Burgers vector of particle II, that (t,b) = (61 ± 3 nm, 0.45 ± 0.02 nm) and of

particle III, that (t,b) = (70 ± 3 nm, 0.35 ± 0.02 nm). Representative simulation results

for both particles can be compared with the respective experimental images in Fig. 17

for particle II and in Fig. 19 for particle III. The values thus obtained for the foil

thickness agree well with the values directly measured according to the contamination

spot method at the same locations: in case of particle II, tc = 62 ± 10 nm and in case of

particle III, tc = 67 ± 10 nm. All results of the fitting procedure have been collected in

Table 2.

                                                          
8 Note, that the comparison of an experimental image with a calculated image is hindered by the
different grey scales of both images. Therefore, the exact intensities at a certain point in both images
cannot be compared on an absolute basis too strictly. Instead, characteristics of both images that are to a
large extent independent of the grey scales used can be compared, such as the extent and the shape of
the bright and dark lobes.

9 Compare also with Figs. 4b and 4d, which display BF and centered DF images for similar thickness
and Burgers vector values, albeit for a somewhat larger particle.
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(a)      (BF)         (centered DF)

Fig. 15a. Comparison of experimental (lower part) and simulated (upper part) BF

image and (200)α-Fe centered DF image of particle I. Simulation was carried out for a

particle of radius R = 9.0 nm and Burgers vector b = 0.332 nm located in the middle

of a 75.0 nm thick foil.

(b)      (BF)         (centered DF)

Fig. 15b. Comparison of experimental (lower part) and simulated (upper part) BF

image and (200)α-Fe centered DF image of particle I. Simulation was carried out for a

particle of radius R = 9.0 nm and Burgers vector b = 0.342 nm located in the middle

of a 124.2 nm thick foil.
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b (nm)

1251007550 t (nm)

0.4
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0.2

Fig. 16. Contour diagram for particle II showing contour plots of the three

experimentally measured particle-lobe distances, dBF (4.1 ± 0.2 nm), dDFl (4.5 ± 0.2

nm) and dDFr (3.6 ± 0.2 nm) as a function of the Burgers vector, b, and specimen

thickness, t, for a simulated VN particle with radius R = 5.3 nm. See also caption of

Fig. 14.

           (BF)         (centered DF)

Fig. 17. Comparison of experimental (lower part) and simulated (upper part) BF

image and (200)α-Fe centered DF image of particle II. Simulation was carried out for

a particle of size R = 5.3 nm and Burgers vector b = 0.45 nm located in the middle of

a 62.0 nm thick foil.

d l
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b (nm)

1251007550
t (nm)

0.5

0.4

0.3

0.2

Fig. 18. Contour diagram for particle III for the three experimentally measured

particle-lobe distances, d BF (4.9 ± 0.2 nm), d l
DF (4.5 ± 0.2 nm) and dr

DF (4.5 ± 0.2 nm)

as a function of the Burgers vector b and specimen thickness t for a simulated VN

particle with radius R = 7.5 nm. See also caption of Fig. 14.

           (BF)         (centered DF)

Fig. 19. Comparison of experimental (lower part) and simulated (upper part) BF

image and (200)α-Fe centered DF image of particle III. Simulation was carried out for

a particle of size R = 7.5 nm and Burgers vector b = 0.35 nm located in the middle of

a 70.0 nm thick foil.

d BF

dr
DF

d l
DF

d BF

d l
DF

dr
DF
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Table 2: Burgers vector-length b and foil thickness t determined with the fitting

procedure for three selected particles of a nitrided Fe-2 at.% V alloy. The

specimen/foil thicknesses were also measured locally using the contamination-spot

separation method yielding tcont (see Section 3). R denotes particle radius.

 Particle R b t tcont

(nm) (nm) (nm) (nm)

I 9.0 ± 0.2 0.34 ± 0.02 73 ± 3 80 ± 5

II 5.3 ± 0.2 0.45 ± 0.02 61 ± 3 62 ± 10

III 7.5 ± 0.2 0.35 ± 0.02 70 ± 3 67 ± 10

5. Additional results and discussion

5.1 Particle size and visibility of strain contrast

Using (200)α-Fe DF images of two different foils prepared from the same specimen

nitrided at 913 K, the size distribution of the VN particles was determined; the

average VN disc diameter is 13.1 nm, with a standard deviation of 7.6 nm, see Fig. 20.

The sizes of the particles investigated detailedly in Section 4 have been indicated. It is

concluded that the selected particles are representative for the system investigated.

Similarly the size distribution of the VN particles of specimen nitrided at 853

K was determined. In this case the average VN disc diameter is 5.1 nm, with a

standard deviation of 3.6 nm. Specimens nitrided at 793 K contain even smaller VN

particles since they could not be made visible in TEM and diffraction contrast lobes

could not be detected. This is consistent with the results from the simulations: for

particle radii smaller than about 2.5 nm (in a 80 nm thick sample and with a 0.35 nm

long Burgers vector) no contrast lobes in the matrix become distinct (see Fig. 5). Even

upon nitriding at 853 K contrast lobes can only rarely be observed, although particles

with a diameter larger than 5 nm then occur. This may at least partly be ascribed to

overlap of displacement fields of neighbouring VN particles. Note that, at constant V

content, the number of VN particles per unit of volume is relatively large if the

average size of the particles is relatively small.

5.2 Platelet thickness

The expected orientation relationship for a VN particle/disc in the α-Fe matrix is the

so-called Bain orientation relationship [19, 20, 22]
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Fig. 20. Distribution of VN particle radii after nitriding an Fe-2 at.% V specimen for

25 hours at 913 K at a nitriding potential of 0.0102 atm-1/2. Particle radii are

measured using (200)α-Fe centered DF images of two different specimens. A total

amount of 360 particles was considered. Radii of the selected particles I, II and III

have been indicated.

 {001}α-Fe//{001}VN; <100>α-Fe//<110>VN. (6)

The VN particles precipitate as platelets in α-Fe because the relative misfit in a

direction parallel to the platelet is small (2 %), whereas the relative misfit in the

direction perpendicular to the platelet is appreciable (44 %) [22]. The VN platelets

consist of a stack of a number of {001}VN lattice planes parallel with the {001}α-Fe

matrix lattice planes. If it is assumed that a coherent particle-matrix interface occurs

such that all misfit is accommodated elastically, it follows from Eq. (3b) that the

values of b obtained for particle I, II and III (see Table 2) correspond to a VN platelet

thickness of 1 to 1.4 nm, i.e. about 5 to 7 monolayers of {001}VN stacked on top of

each-other. This value of the thickness agrees very well with the value of 1.4 nm

derived from the length of the {200}VN streaks, as discussed in Section 4.1.

5.3 Occurrence of misfit dislocations; lattice plane imaging

For platelets of relatively large thickness it is conceivable that the platelet/matrix

misfit can no longer be accommodated fully elastically. If the misfit exceeds a critical
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value, it is energetically more favourable to introduce (misfit) dislocations. Then Eqs.

(3a)  and (3b) do no longer hold and the true particle thickness is larger than derived

from the particle-lobe distances using the procedure discussed and used in Section 4.

Evidence for the occurrence of a few misfit dislocations was obtained for

relatively large VN precipitates using High Resolution Electron Microscopy (HREM).

Contrast of both the (110)α-Fe fringes in the matrix and the (111)VN fringes in the

platelets is shown for a relatively large VN platelet (16 nm long) in α-Fe in Fig. 21.

Misfit dislocations are revealed near the platelet-matrix interface at the extremities of

the projected platelet (see arrows in figure). Note that only a component of b in the

[110]α-Fe direction is directly revealed in the image.

Fig. 21. High Resolution Election Microscopy (HREM) image of an Fe-2 at.% V

specimen, nitrided for 25 hours at 913 K at a nitriding potential of 0.0102 atm-1/2, and

showing the (110) Fe lattice fringes and the (111) VN lattice fringes. The electron

beam direction was a few degrees away from the [001]α-Fe zone axis. The objective

aperture included the first order reflections and the transmitted beam. The arrows

indicate the locations of two misfit dislocations. The verticle bar corresponds to 6 nm.

110
100

110
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5.4 X-ray diffraction line-shift and -broadening

The {222}α-Fe diffraction line profiles of an unnitrided specimen and of specimens

nitrided at 793 K, 853 K and 913 K are presented in Fig. 22 (note the logarithmic

intensity scale). Upon nitriding a strong asymmetrical line broadening takes place: the

peak maximum shifts appreciably from the peak position of the line profile of the

unnitrided specimen and asymmetrical, distinct tails appear. The tail at the high angle

side is more pronounced that the one at the low angle side. This type of line

broadening is typical for the case of small coherent inclusions in a matrix with elastic

accommodation of the misfit [23-27]. Only in case of the specimen nitrided at 913 K a

separate { }200 VN
XRD  reflection could be observed (near 43.7 º2θ), in accordance with

the presence of elongated { }200 VN
TEM  spots in the selected area diffraction pattern of

Fig. 9c.

The shape and the width of the measured line profiles are interpreted now

considering their Fourier transforms. In order to remove the broadening due to the

wavelength distribution and the instrumental aberrations the {533} line profile of a
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793 K

913 K

853 K

not nitrided

{222}α-Fe

Fig. 22a. X-Ray diffraction line profiles recorded for the {222}α-Fe reflection of

different Fe-2 at.% V samples nitrided for 25 hours at 793 K, 853 K or 913 K at a

nitriding potential of 0.0102 atm-1/2 and of a not-nitrided reference sample. Vertical

bars indicate the centroid positions of the respective line profiles; see also Table 3.

º2θ
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Fig. 22b. Modulus of the Fourier transforms of the only structurally broadened

{222}α-Fe reflections of different Fe-2 at.% V samples, nitrided for 25 hours at 793 K,

853 K or 913 K at a nitriding potential of 0.0102 atm-1/2.

specially made strain free Si-powder sample [28], with a peak position close to the

peak position of the {222}α-Fe line profile, was used to deconvolute the line profiles

measured [4]. The results, in terms of the Fourier transform, F(L), with L as a

correlation distance, of the only structurally broadened line profiles, are presented in

Fig. 22b. In case of the Fourier transform of the specimen nitrided at 793 K F(L)

decreases for short correlation lengths (0 < L < 10 nm to 15 nm) to a more or less

constant value10. This more or less constant level of the Fourier transform is

equivalent to the presence of a sharp Bragg-like peak in the intensity distribution (cf.

Fig. 22a) [31]. This observation is interpreted such that in the specimen nitrided at 793

K (and possibly also in the one nitrided at 853 K) apparently, the lattice distortions

brought about by the misfitting particles do not disturb the phase relation between

atoms at large correlation distances. In case of the specimen nitrided at 913 K such a

non-zero constant level for the Fourier transform of the line profile is not observed:

the phase relations between atoms separated by a distance L > 30 nm have become
                                                          
10 The more or less periodic ripple observed for F(L) nitrided at 793 K at approximately L = 16, 48 and
80 nm and the slight decrease upon increasing L for the plateau level of F(L) for the specimens nitrided
at 793 K and 853 K can be ascribed fully to minor shape differences of the instrumental {533}Si line
profile and the {222}α-Fe line profile due to counting statistics and different measurement conditions
(step size and slit size) (see discussion in Refs. 29 and 30).
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totally uncorrelated. It has been suggested that this effect occurs for lengths of L

encompassing 2 to 3 interparticle distances [25]. Indeed, it follows from Figs. 9a and

9b in case of the specimen nitrided at 913 K that a distance of 30 nm includes

approximately 2 to 3 particles.

The centroid positions of the {222}α-Fe line profiles, measured for an

unnitrided specimen and specimens nitrided at 793 K, 853 K and 913 K, were

determined, see Fig. 22a and Table 3. The line profile centroids are shifted towards

the low angle side with respect to centroid of the unnitrided specimen; the centroid

shifts of the nitrided specimens increase for decreasing nitriding temperature. The

following causes for the line profile centroid shifts can be considered.

Table 3: Centroids of {222}α-Fe line profiles, 1 222dc
{ }  or 2θc, of an unnitrided

specimen and specimens nitrided at 793 K, 853 K or 913 K. The centroids were

calculated on a 1/d-scale.

Specimens unnitrided 793 K 853 K 913 K

1 222dc
{ } (nm-1) 12.081 12.067 12.076 12.087

º2θc 137.28 136.96 137.18 137.44

Firstly, V depletion of the matrix due to precipitation of the substitutionally

dissolved V as VN induces a temperature independent centroid shift. Using Vegard's

law [32] and the lattice constant of V, aV = 0.30232 nm [12], a centroid shift upon

precipitation is determined towards the high angle side, which is not observed

implying that this effect does not dominate the occuring centroid shift.

Secondly, interstitially dissolved N in the matrix after precipitation leads to

centroid shifts that can be shown to be much smaller than the observed ones.

Thirdly, following a model described in Ref. [22], a positive hydrostatic strain

emerges upon precipitation of VN in the α-Fe matrix as a consequence of the elastic

accommodation of the precipitate/matrix misfit, which causes the centroid to shift

towards the low angle side, as observed. The model assumes the presence of (i)

misfitting VN platelets in a finite α-Fe-matrix and of (ii) extra (excess) N atoms

adsorbed (and located in octahedral interstices) at the interface of the VN precipitates

and the α-Fe-matrix. The extra N atoms effectively enlarge the misfit of the VN

precipitates with respect to the α-Fe-matrix. The amount of excess N adsorbed at the

platelett/matrix interface has been derived from mass measurements before and after

the nitriding; these amounts decreased for increasing nitriding temperatures [22]. Then

the centroid shift towards lower diffraction angles would decrease for increasing
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nitriding temperature, which agrees with the present experimental observation. A

quantitative assessment cannot be made as the matrix should diffract fully

independently from the VN particles, which, especially for the relatively low nitriding

temperatures, appears not to be the case (see above).

6. Conclusions

Diffraction contrast simulation model

- The strain field surrounding misfitting inclusions can be characterized quantitatively

comparing simulated and measured full diffraction-contrast Transmission Electron

Microscopy (TEM) images.

- The misfit, as indicated by a "particle Burgers vector", for disc shaped

inclusions/precipitates, can be determined unambiguously from the contrast lobes

widths ("image widths") as measured in both bright field and dark field.

- For determination of the particle Burgers vector diffraction-contrast image

simulations can be based on a system of a single particle in an infinite matrix, as the

inner parts of the contrast images are practically unaffected by the presence of

neighbouring particles.

Misfitting VN particles in α-Fe matrix

- Upon nitriding of an Fe-2 at.%V alloy small misfitting VN platelets are formed

along {001}α-Fe with {001}VN parallel to {001}α-Fe. The platelet/disc radius increases

with increasing nitriding temperature from a few nanometers after nitriding at 793 K

to 13 ± 7 nm after nitriding at 913 K. After nitriding at 913 K the platelet thickness

equals about 1 to 1.4 nm as indicated by both the diffraction strain contrast

(simulations) and the extent of the VN precipitate diffraction streaks. The misfit is

largely accommodated elastically; only a few misfit dislocations were observed in

High Resolution Electron Microscopy images for only the larger VN precipitates

- The observed diffraction contrast images after nitriding at 913 K could be simulated

well using the diffraction and strain models.

- On the basis of the contrast lobe widths in bright field and dark field combinations of

possible values for the "Burgers vector of the particle", b, and the thickness of the foil,

t, were obtained. Selection of the correct combination of b and t was possible by

comparing the full simulated and experimental diffraction-contrast images. The fitted

value of the local foil thickness agrees well with the value determined directly by the

contamination-spot method at the location of the precipitate.
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- The observed shifts and broadenings of the XRD profiles support the results

obtained using TEM.
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Appendix
 Rearrangement of Howie-Whelan equations for a four beam case

Analogous to the procedure given in Ref. [7] for a two beam case, each amplitude

Φ g j
 of the (four) coupled differential equations of Eq. (1) is multiplied by an

additional phase factor such that the term ( )g g uj k− ⋅  arises only once in every

differential equation. This leaves the intensity of each beam at the bottom of the

specimen unaffected because any additional phase factor cancels out when the

amplitudes are multiplied by their complex conjugates, but the numerical integration

of Eq. (1) is accellerated greatly.

The new amplitude equations are written as

d
dz

AΦΦ ΦΦ= (A. 1)

where ΦΦ is a column vector containing the real and imaginary parts of the opering

beams
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and where A is an 8 by 8 matrix describing the phase relations between the real and

imaginary parts of the four beams
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(A. 3)

The symbols in the above A matrix represent the following. The deviation of the

Bragg position of the beams -g and 2g is indicated by the deviation parameter w

w s= ξg (A. 4)

with s according to Eq. (2) in Section 2.1.1. The influence of the displacement field of

the misfitting particle is represented by βi, defined as

βi i
d
dz

= ⋅g u (A. 5)

with gi one of the beams considered, gi = -g, 0, g or 2g for i = 1, 2, 3 or 4, and u the

displacement field as described in Section 2.2.3. Absorption effects were incorporated

into Eq. (1) by replacing 1 ξg  by 1 ξ ξg g+ ′i  where g = gj - gk. They are subdivided

into normal absorbtion effects, described  by n, and anomalous absorption effects,
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described by a1, a2 and a3. The ratios between the extinction distances used are given

by r1, r2 and r3:

n
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r r r
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Abstract

An (X-ray) diffraction line-profile analysis method has been proposed to determine the

volume fraction of a component with a “homogeneous” microstructure that forms part of a

sample that is, overall, microstructurally non-homogeneous. The method is based on

deconvolution of a measured line profile of the sample to be analysed with a line profile

separately measured from material that is microstructurally identical to the homogeneous

component in the mixture. Consequences of counting statistical variations for the application

of the method have been analysed. The method has been applied to ball milled Mo powder to

determine the volume fraction of the undeformed powder present in the ball-milled powder.

1. Introduction

The analysis of X-ray diffraction (XRD) line broadening enables the determination of

quantities such as the “size” of and the “microstrain” within the crystallites contained

in the diffracting volume [1]. The results of an XRD measurement have to be

interpreted as a volume weighted average of these quantities over the diffracting

crystallites in the volume irradiated. Hence, straightforward interpretation of the

broadening of XRD line profiles measured from microstructurally non-homogeneous

materials is impossible. However, if one separate microstructurally homogeneous

component can be identified in this non-homogeneous diffracting volume, the volume

fraction of the homogeneous component and the line broadening due to only the
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remaining material in the diffracting volume can be determined. To this end a

deconvolution method is presented here. The effect of counting statistics is analysed

quantitatively, leading to a procedure for application of the method proposed.

The diffraction analysis of an initial stage of the deformation process of Mo

powder in a ball mill will be given as an example for the procedure proposed.

2. Theoretical basis

The result of an XRD measurement can be given in the form of a line profile: i.e. the

measured diffracted intensity I as a function of the diffraction angle 2θ or the length of

the diffraction vector. A measured line profile (h-profile) can be described as the

convolution of the structural line profile (f-profile) with the instrumental line profile

(g-profile). Convolution of two functions in real space is equivalent to the

multiplication of their respective Fourier transforms in Fourier (reciprocal) space [2].

The Discrete Fourier Transform (DFT) of a function h(t) given by N equidistant

sample values (t = 0, 1, 2, ..., (N-1)) is given by:

( ) ( ) ( )H n h t int N
t

N
= ∑

=

−
exp 2

0

1
π , (1)

where n denotes the harmonic number, n = 0, 1, 2, ..., (N - 1), and N can be written as

p/∆t, with ∆t as the sampling distance in real space and p as the period of the function

in real space.

Consider the situation in which a separate component A can be identified in

the total diffracting volume composed of (homogeneous) component A and the rest of

the (inhomogeneous) diffracting volume, component B. According to the kinematical

diffraction theory the total intensity diffracted by a volume of material for a {HKL}

reflection, Itot
HKL ( )2θ , is equal to the sum of the diffracted {HKL} intensities from the

individually (i.e. incoherently) diffracting crystallites. Hence, Itot
HKL ( )2θ  can be written

as the volume weighted sum of the intensity diffracted by crystallites belonging to

component A, I A
HKL ( )2θ , and the intensity diffracted by crystallites belonging to

component B, IB
HKL ( )2θ :

( ) ( ) ( ) ( )I I Itot
HKL

A
HKL

B
HKL2 2 1 2θ α θ α θ= + − , (2)

where α denotes the volume fraction of diffracting crystallites of component A.
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Using the additivity of DFT’s, it follows from Eq. (2):

( ) ( ) ( ) ( )H n H n H ntot
HKL

A
HKL

B
HKL= + −α α1 , (3)

where H ntot
HKL ( ) , H nA

HKL ( )  and H nB
HKL ( ) are the DFT’s of the corresponding line

profiles, normalised such that H H Htot
HKL

A
HKL

B
HKL( ) ( ) ( )0 0 0 1= = = .

Now, to determine α and IB
HKL ( )2θ , it will be supposed that I A

HKL ( )2θ  can be

recorded from a material that has a microstructure identical to that of component A in

the sample to be analysed. For this line profile, to be denoted by Is
HKL ( )2θ , it thus

holds:

( ) ( )I Is
HKL

A
HKL2 2θ θ=  and ( ) ( )H n H ns

HKL
A
HKL= .  (4)

Deconvolution of Itot
HKL ( )2θ  with I s

HKL ( )2θ  can be carried out according to:

( ) ( )
( ) ( ) ( )

( )
D n A n iB n

H n

H n

H n

H n
HKL

D
HKL

D
HKL tot

HKL

s
HKL

B
HKL

A
HKL

≡ + ≡ = + −( ) ( ) α α1 , (5)

with ( )DHKL 0 1= ; A nD
HKL ( )  and B nD

HKL ( )  represent the real and the imaginary parts of

D nHKL ( ) .

Note that the line profile Is
HKL ( )2θ , acting as a “g-profile” in the

deconvolution, need not have as little structural broadening as possible. If the line

profile resulting from the crystallites belonging to component A is less broad on a 2θ
axis than the line profile resulting from the rest of the crystallites, i.e. component B,

then the second term at the right-hand side of Eq. (5) vanishes for sufficiently large n.

Then D nHKL ( )  becomes equal to α. Thereby not only the volume fraction α of

component A can be determined in principle, but subsequently H nB
HKL ( )  (and

IB
HKL ( )2θ ) can be obtained as well. Obviously, as in “normal” deconvolution

procedures (cf. Ref. 3), the accuracy in the values obtained for the desired parameters,

here α (and H nB
HKL ( ) ), is strongly determined by counting statistical variations in the

values of H ntot
HKL ( )  and H ns

HKL ( ) . This effect will be discussed in section 4.

3. Experimental

Mo powder (Alpha, 99.9 wt-% pure, almost spherical particles with diameter 1 - 7

µm) was ball milled in vacuum for 30 minutes in a low energy ball mill. This ball mill
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is an evacuated vibrating cylindrical vessel with a bottom plate of WC - whereupon

the Mo powder is deposited - and that contains a ferritic stainless steel ball. Scanning

Electron Microscopy analysis (see [4] for more experimental details and results) of

undeformed starting powder (further denoted Mo0) and deformed powder (further

denoted Mo30) suggested, from the shape of the powder particles, that the Mo30

powder consists of deformed (crushed) particles as well as undeformed particles

(Mo0).

To enable a study of the kinetics of the deformation process of Mo in the ball

mill it is imperative to determine the volume fraction of the remaining undeformed

component as function of ball milling parameters. To this end the procedure proposed

in section 2 was applied where the undeformed component is taken as component A.

Small volumes of the Mo0 powder and of the Mo30 powder were deposited onto

Si 510 -single crystal wafers to enable XRD-measurements [5]. These measurements

were performed on a Siemens F-ω diffractometer equipped with a curved graphite

monochromator in the diffracted beam. From both specimens the {110} reflections

were measured in the same way using Cu-Kα radiation within the 2θ-range 32.5 °2θ
to 51.0 °2θ using a 0.01 °2θ stepsize and a 2 (s) counting time. Each specimen was

measured five times consecutively to study the reproducibility of the measurements

and the influence of counting statistical errors.

4. Results and discussion

The as-measured line profiles corresponding to the {110}-reflections of both the Mo0

specimen and the Mo30 specimen are shown in Fig. 1. The line profiles have been

normalised by division by their integral intensities. Clearly, the {110} line profile of

the Mo30 powder is broader than that of the Mo0 powder (see in particular the lower

intensity maxima for the Mo30 powder).

A linear background determined by a least-squares fit through the first and last

5 % of the data points was subtracted from the line profiles measured. Identifying the

{110} profile of the Mo30 powder as I tot
HKL ( )2θ  and the {110} profile of the Mo0

powder as I s
HKL ( )2θ , Eq. (5) was applied. To avoid effects on A110(n) and B110(n) due

to non-coincidence of centroid and origin of the abcissa in real space, the modulus of

D110(n), |D110(n)|, is considered (Fig. 2a).

From Fig. 2a it follows that with increasing value of the harmonic number n,

|D110(n)| decreases from |D110(n)| = 1 to a more or less constant value of approximately

α = 0.76 for 150 < n < 220, indicating that the ball milled powder contains a certain

volume fraction of undeformed particles. For still higher values of n, |D110(n)| starts to
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oscillate severely and α-determination is impossible. This effect can be ascribed to

counting statistics as discussed next.

0.10

0.05

0.00

I11
0 (º

2θ
)

40.840.640.440.2

º2θ

 Mo0

 Mo30

Fig. 1. Part of the Cu-Kα {110} line profiles recorded from the Mo0 and Mo30

powders. No background correction has been applied; both line profiles have been

normalised by division of the intensity values by the corresponding integral

intensities.

To obtain an indication of the influence of counting statistical errors on the |D110(n)|-

curve results given in Refs. 3 and 6 for the counting statistical variance of

deconvoluted Fourier coefficients, here σ 2 ( )| |AD  and σ 2 ( )| |B D , can be used.

Neglecting the covariances, it follows:

σ σ σ2
2

2
2

2(| ( )|)
( )

| ( )|
( )

( )

| ( )|
( )| |

| |
| |

| |D n
A n

D n
A

B n

D n
BD

D
D

D=






 +







 . (6)

The standard deviations σ (| ( )|)D n110  calculated using this equation are shown in Fig.

2b. Obviously the standard deviations increase with increasing n, but only beyond

n ≈  400 σ (| ( )|)D n110  becomes really large, i.e. of the same magnitude as |D110(n)|

itself (cf. Fig 2a and 2b). This supports the above interpretation that the oscillations in

|D110(n)| for n > 400 are caused by counting statistics. Further, it is remarkable that the

standard deviation appears to show a periodic occurrence of maxima (see at n ≈  90 -

100, 260 - 280 and 430 - 470 in Fig. 2b). The maxima are caused by small differences
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between the ( )I A
110 2θ  component profile of the ( )I tot

110 2θ  line profile, and the

separately measured ( )I s
110 2θ  profile, due to occurrence of counting statistical

variations in the intensity values. In the absence of counting statistics both profiles

would be equal, as implied by Eq. (4). The shape differences are most pronounced at

2θ locations where the intensities are large, i.e. at and around peak maxima.

Consequently the Kα1-Kα2 doublet nature reveals itself in the occurrences of periodic

maxima in σ (| ( )|)D n110  as will be shown below (see also Ref. 7).
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Fig. 2a. The modulus of D110(n) (cf. Eq. (5)) as obtained from the profiles shown in

Fig. 1.
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Fig. 2b. The counting statistical variance of the modulus of the Fourier coefficients of

D110(n) shown in Fig. 2a (cf. Eq. (6)) (logarithmic ordinate!).

Suppose the Kα1-Kα2 doublet (of component A) consists of the sum of a

single peaked function, I(2θ), with its top at the origin of the 2θ-axis and a scaled
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(R = 0.5) and displaced (∆ °2θ) version of the same function, RI(2θ - ∆), and thus

Iα α θ1 2 2/ ( ) = I(2θ) + RI(2θ - ∆). To illustrate the effects of counting statistical shape

differences a second doublet is constructed that is equal to the first doublet but in

addition a “delta” peak with area Ic is added at the top position of the Kα1-peak and

thus I I RI Icα α
δ

αθ θ θ δ θ1 2 12 2 2 2/
max( ) ( ) ( ) ( )= + − +∆ . If the Fourier transform of this

affected, second doublet is divided by the Fourier transform of the unaffected, first

doublet (similar to the procedure outlined in section 2 with Iα α
δ θ1 2 2/ ( )  as I tot ( )2θ  and

Iα α θ1 2 2/ ( )  as I s ( )2θ ) the result is:

D n
I A n R n N B n R n N I

H n R n N R
c H H c( )

( )( cos( ) ( )( sin( )

| ( )| ( cos( ) )
= +

+ + +
+ +

1
2 1 2 2 2

1 2 2

2

2 2

π π
π

∆ ∆
∆

, (7)

with H(n) as the Fourier transform of Iα α θ1 2 2/ ( )  and with ∆ expressed as a number of

steps; A nH ( )  and B nH ( )  represent the real and the imaginary parts of D(n). In the case

of a Lorentzian shape function for I(2θ), with maximum intensity I0 and full width at

half maximum 2w, Eq. (7) becomes approximately:

D n
I
wI

e
n N

c wn( )
cos( )

≈ + +
+









1

2
1

3 4

5 4 20

2

π π
π

∆
. (8)

If a deconvolution procedure like the one described by Eq. (5) is performed, it follows

simply from Eq. (8) that the intensity aberration at the top of a Kα1 peak leads to

effects in Fourier space such that local error maxima occur at approximately

n N N= 2 3 2∆ ∆, , ...  and local error minima at n N N= 0 2, , ,...  ∆ ∆ . For the case

shown in Fig. 2 it holds that N = 1851 and ∆ = 10 and therefore the spacing between

the local maxima and between the local minima in Fig. 2b should be N/∆ ≈  185,

which agrees well with the experimental observation reported above.

From the above analysis it follows that the value of α can best be determined

from |D110(n)| where n is sufficiently large and the estimated standard deviation show

a local minimum; i.e. within the range of Fourier numbers 160 < n < 190 (cf. Fig. 2).

The corresponding results of the proposed deconvolution method as obtained for five

consecutive measurements performed under similar conditions are given in Table 1.

Clearly good reproducibility has been achieved. The remaining small differences in

the α values are ascribed to the effect of counting statistics (for n ≈ 200 σ ≈ 0.02, cf.

Fig. 2b).
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For the determination of α it is recommended not to apply profile unraveling

methods based on fitting specific profile-shape functions such as by application of

PROFIT [8]. Fitting of specific, presupposed profile functions for components A and

B leads to systematic differences between the measured total profile and the fitted total

profile function [9]. It can be shown that these differences yield pronounced effects on

the value determined for α.

Table 1. Results of α-determination using the {110} line profiles recorded from the

Mo30 powder and the Mo0 powder according to the deconvolution method proposed in

section 2.

measurement

number

1 2 3 4 5

volume

fraction α
0.74 0.76 0.76 0.77 0.76

5. Conclusions

Both (i) the volume fraction of a separate, homogeneous component (A) contained in a

(microstructurally) non-homogeneous specimen and (ii) the diffraction-line

broadening due to the rest of the diffracting volume (component B) can be determined

by application of a special deconvolution procedure of an (X-ray) diffraction-line

profile recorded from the mixture. The method requires that the line profile of the

component A is less broad than the line profile of component B.

The accuracy of the results obtained is largely determined by the effect of

counting statistics. A region in Fourier space can be indicated where the determination

of the parameters sought for is optimal.
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Abstract

X-ray diffraction measurements and analysis were carried out on ball milled Mo powder.

During the ball milling of Mo powder several stages of deformation could be identified. After

short durations of ball milling still undeformed starting powder was present of which the

volume fraction was determined. The initial aggregates of deformed powder particles

exhibited a deformation texture. On prolonged ball milling the particle size decreased, the

deformation texture disappeared and internal strains built up. By simulation and matching of

the corresponding line profiles using a new Monte-Carlo-type of line-profile simulation based

on a simple three dimensional model of the distribution of straight dislocations, an estimate

of the dislocation density in the ball milled particles was obtained.

1. Introduction

In recent years ball milling of powders, in case of starting with a mixture of elemental

powders also called mechanical alloying, has become an area of large interest. The

milling of elemental and/or alloyed powders provides a route for the production of

non-equilibrium materials that may possess unusual chemical and physical properties.

Examples are the production of amorphous materials [1], nanostructured materials [2]

and intermetallic phases [3].
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Little is known yet about processes as welding, fracture, recovery and

recrystallisation that can take place at the interfaces of and within the powder particles

during ball milling. X-Ray Diffraction (XRD) is a versatile, non-destructive,

experimental technique that enables the quantitative determination of (i) the average

size of coherently diffracting particles, of (ii) "macroscopic" strains, i.e. strains on the

length scale of a grain in the specimen, and of (iii) "microscopic" strains, i.e. strains

varying over atomic distances. Therefore, XRD is particularly suited for a quantitative

study on the deformation of powder particles upon ball milling.

In this work the emphasis has been on the study of the first stages of the ball

milling process of Mo powder in a low-energy ball mill. From preliminary explorative

work [4] it followed that Mo powder milled during a relatively short time consists of a

mixture of deformed and undeformed powder particles, at least for the type of ball

milling applied here. XRD measurements of such mixtures have been carried out to

determine the evolution of the volume fractions of the undeformed and the deformed

parts of the powder and to evaluate from the diffraction-line broadening the structural

changes that occurred in the deformed Mo powder particles.

2. Theoretical basis

2.1 Description of diffraction-line profiles in real space and Fourier space

The result of an XRD measurement can be given in the form of a line profile: i.e. the

measured diffracted intensity I as a function of the diffraction angle 2θ or the length of

the diffraction vector. A measured line profile (h-profile) can be described as the

convolution of the structural line profile (f-profile) with the instrumental line profile

(g-profile). Convolution of two functions in real space is equivalent to the

multiplication of their respective Fourier transforms in Fourier (reciprocal) space [5].

The Discrete Fourier Transform (DFT) of a function h(t) given by N equidistant

sample values (t = 0, 1, 2, ..., (N-1)) is given by:

( ) ( ) ( )H n
N

h t int N
t

N
=

=

−
∑

1
2

0

1
exp π ,  (1)

where n denotes the (harmonic) number, n = 0, 1, 2, ..., (N - 1), and N can be written

as p/∆t, with ∆t as the sampling distance in real space and p as the period of the

function in real space.
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The diffracting volume pertaining to the {HKL} reflection can consist of a mixture of

undeformed powder particles of total volume Vundef
HKL  and deformed powder particles of

total volume Vdef
HKL . According to the kinematical diffraction theory the total intensity

diffracted by a volume of material for a {HKL} reflection, Itot
HKL ( )2θ , is equal to the

sum of the diffracted {HKL} intensities from the individually (i.e. incoherently)

diffracting crystallites [6]. Hence, Itot
HKL ( )2θ  can be written as the volume weighted

sum of the intensity distributions diffracted by the undeformed powder particles,
Iundef

HKL ( )2θ , and the deformed powder particles, Idef
HKL ( )2θ , respectively,

( ) ( ) ( )I V I V Itot
HKL

undef
HKL

undef
HKL

def
HKL

def
HKL

2 2 2θ θ θ= +  . (2)

where Iundef
HKL ( )2θ  indicates the diffracted intensity per unit volume undeformed

material and Idef
HKL ( )2θ  indicates the diffracted intensities per unit of volume

deformed material.

Using the additivity of DFT’s, it follows from Eq. (2):

( ) ( ) ( )H n V H n V H ntot
HKL

undef
HKL

undef
HKL

def
HKL

def
HKL= + , (3)

where H ntot
HKL ( ) , H nundef

HKL ( )  and H ndef
HKL ( ) are the DFT’s of the corresponding line

profiles. Thus

( ) ( ) ( )H n H n H ntot
HKL HKL undef

HKL HKL def
HKL= + −α α( )1 (4)

where αHKL denotes the volume fraction of undeformed powder in the mixture of

undeformed and deformed powder particles for the reflection considered

( )α HKL
undef
HKL

undef
HKL

def
HKLV V V≡ + . (5)

To determine αHKL a route is given in Section 2.2. To determine the {HKL}

independent fraction of undeformed material in the powder, i.e.

α = +V V Vundef undef def( ) , a ratio concerning all powder particles irradiated and not

just the powder particles with diffracting {HKL} lattice planes, a direct route is given

in Section 2.3. Evidently, if αHKL is independent of HKL, i.e.
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α HKL
undef
HKL

undef
HKL

def
HKLV V V= +( )  = + ≡V V Vundef undef def( ) α , then α follows directly

from the route given in Section 2.2.

2.2 Deconvolution with prior normalization

To determine αHKL and Idef
HKL ( )2θ  or equivalently H ndef

HKL ( ) , it will be supposed that
Iundef

HKL ( )2θ  for the undeformed powder particles in the mixture can be measured

separately from a separate, reference specimen of undeformed powder particles

yielding I Iref
HKL

undef
HKL( ) ( )2 2θ θ= . Deconvolution of I tot

HKL ( )2θ  ( = I tot
HKL ( )2θ per unit

of volume), acting as the "h"-profile, with Iref
HKL ( )2θ , acting as the "g"-profile,

through division of H ntot
HKL ( )  with H nref

HKL ( )  leads to (cf. Eq. (4))

   ( ) ( )
( )

( ) ( )
( )

D n A n iB n
H n

H n

H n

H n
nor
HKL

D
HKL

D
HKL tot

HKL

ref
HKL

HKL HKL def
HKL

ref
HKL≡ + ≡ = + −( ) ( ) α α1  (6)

with A nD
HKL ( )  and B nD

HKL ( )  as the real and the imaginary parts of D nnor
HKL ( ) . The

quotient H n H ntot
HKL

ref
HKL( ) ( )  in Eq. (6) equals the quotient of H ntot nor

HKL
, ( )

( ≡ =H n H ntot
HKL

tot
HKL( ) ( )0 ) and H nref nor

HKL
, ( ) ( ≡ =H n H nref

HKL
ref
HKL( ) ( )0 ), because

H n c Vtot
HKL

tot tot
HKL( )= = ⋅0  and H n c Vref

HKL
ref ref

HKL( )= = ⋅0 , with c ctot ref= ,

recognizing that the integrated intensity (per unit volume) is independent of the state

of deformation. Thus: D nnor
HKL ( )= =0 1.

Note that the line profile of the reference specimen acting as a "g-profile" in

the deconvolution should contain (only) the same broadening as due to the

undeformed particles in the milled powder and thus it need not necessarily have as

little structural broadening as possible.

As the line profile resulting from the undeformed powder particles is less

broad on a 2θ axis than the line profile resulting from the deformed powder particles,

the second term at the right-hand side of Eq. (6) vanishes for sufficiently large n. Then

D nnor
HKL ( )  becomes equal to αHKL. Thereby in principle not only the volume fraction

αHKL of the undeformed powder is determined, but, using Eq. (6), subsequently the

Fourier transform of the line profile of the deformed part of the ball milled powder

deconvolved with the reference powder, i.e. H n H ndef
HKL

ref
HKL( ) ( ) , is obtained as well.

Note that αHKL can depend on HKL since Vdef
HKL can depend on HKL (see

discussion at the end of Section 2.1). In practical cases the determination of αHKL (and
Idef

HKL ( )2θ ) is hindered by effects due to measurement errors and counting statistical

variations in the measured intensity [6 - 8]. A procedure is given in Ref. 4 to
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determine αHKL accurately from "h" and "g" line profiles affected by counting

statistical errors.

2.3 Deconvolution without prior normalization

Clearly, if Vdef
HKL  depends on HKL (as due to the occurrence of preferred orientation),

then αHKL depends on HKL (Eq. (5)). However, the fraction of undeformed powder

particles in the mixture of undeformed and deformed powder particles,

α = +V V Vundef undef def( ) , is in principle thought to be independent of HKL. This

volume fraction can be determined if the deconvolution procedure (cf. Section 2.2) is

performed without prior normalization. Then, deconvolution of the non-

normalised I tot
HKL ( )2θ  with the non-normalised Iref

HKL ( )2θ  through division of the

corresponding Fourier transforms gives

( )
( )

( )
( )
( )

D n
H n

V H n

V

V

V

V

H n

H n
non nor
HKL tot

HKL

ref
HKL

ref
HKL

undef
HKL

ref
HKL

def
HKL

ref
HKL

def
HKL

ref
HKL− = = +

 
(7)

with now Dnon nor
HKL

− ≠( )0 1 . For sufficiently large n the second term at the right-hand

side of Eq. (7) vanishes, analogous to the normalised case considered above, and

D nnon nor
HKL

− ( )  becomes equal to V Vundef
HKL

ref
HKL . It can be supposed that the undeformed

part of the powder that has been ball milled is equal to the powder of the reference

specimen (the same morphology, microstructure and texture; implying the same

procedure for (diffraction) specimen preparation for both specimens). Then

V Vundef
HKL

ref
HKL  must be independent of the {HKL} reflection considered and thus

V

V

V

V
undef
HKL

ref
HKL

undef

ref
=

 

 
. (8)

From this ratio the true, HKL independent, fraction of undeformed powder in the

mixture of deformed and undeformed powder particles of the ball milled specimen,

can be determined through

α =
+

=
+

=
V

V V

V

V

V

V V

V

V

V

V
undef

undef def

undef

ref

ref

undef def

undef

ref

ref

tot
(9)
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if, in addition to V Vundef ref  (see above), V Vref tot  is known. The ratio V Vref tot  is

given by the known mass ratio of the reference (diffraction) specimen and the

(diffraction) specimen investigated if the diffraction experiments for both specimens

are carried out identically, i.e. the irradiated volumes for both experiments are equal.

The Fourier transform of the line profile of the deformed part of the ball milled

powder deconvolved with the reference profile, i.e. H n H ndef
HKL

ref
HKL( ) ( ) , can be

obtained using Eq. (7) with V Vundef
HKL

ref
HKL  (= V Vundef ref ; cf. Eq. (8)) as given by the

above discussed plateau level (see below Eq. (7)) and with V Vdef
HKL

ref
HKL  as

determined from D nnon nor
HKL

− =( )0  and V Vundef
HKL

ref
HKL .

3. Experimental

The ball milling experiments were performed in the ball mill depicted schematically

in Fig. 1. It consists of a cylindrical vessel (inner diameter of 63 mm) with a WC

bottom plate (diameter of 20 mm), whereupon the Mo powder was deposited, and a

ferritic stainless steel ball (diameter of 58 mm). The experiments were carried out in

vacuum (atmosphere pressure less than 10-4 Pa). The cylindrical vessel vibrated with

an amplitude of 2 mm at a frequency of approximately 20 Hz.

Three series of ball milling experiments were carried out as function of ball

milling time using about 2 g of Mo powder (Alpha, 99.9 wt-% pure, almost spherical

particles with diameter 1 - 7 µm) for each series (see Fig. 3a).

In the first series, denoted series A, Mo powder was ball milled for 0.5 h, 1 h, 2

h and 4 h consecutively. After 0.5 h of ball milling the milling experiment was

stopped temporarily and the steel ball was taken out. A small amount of 0.1 g Mo

powder was taken out both from the middle and the periphery of the deposit of Mo

powder in the ball mill as indicated in Fig. 1 by "m" and "p", respectively. Then the

ball milling experiment was resumed and the remaining Mo powder was ball milled

for another 0.5 h to complete 1 h of ball milling. Again a sample at "m" and a sample

at "p" were taken out. Subsequently, such samples of Mo powder were taken out after

a total ball milling time of 2 h and 4 h, as well.

In the second and third series Mo powder was ball milled for 2, 4, 8 and 16 h

consecutively (series B) and 8, 16, 32 and 64 h consecutively (series C) in the same

way as described above for series A. However, samples were taken only from the

periphery (at "p") of the Mo powder deposit in the ball mill (differences in degree of

milling for locations "m" and "p" become negligible for longer milling times (see

results reported in Section 5.2)). Since it appeared difficult to impose a constant

milling intensity (dependent on frequency of the vibrating cylindrical vessel and the

powder mass to be milled) in each series, the ball milling times of the various series
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were chosen to overlap partly. The results of series C after 64 h of ball milling were

disregarded in this work due to excessive contamination of the ball milled powder

with small Fe-rich particles broken out of the vibrating ball.

Rb

m p

WC bottom plateMo powder

20 Hz

vacuum system

vR

bp
R

Fig. 1. The ball milling equipment consists of a cylindrical vessel (inner diameter of

Rv = 63 mm) with a WC bottom plate (diameter of Rbp = 20 mm), whereupon the Mo

powder is deposited and a ferritic stainless steel ball (diameter of Rb = 58 mm). The

experiments are carried out in vacuum with a vibration frequency of the cylindrical

vessel of approximately 20 Hz and an amplitude of 2 mm. Regions where after some

ball milling time powder was acquired are indicated by "m" and "p".

The specimens for the XRD-measurements were prepared by suspending a

small volume of Mo powder in isopropanol directly on a Si 510 -single crystal wafer

within a specially made support-ring assembly and drying the suspension by

evaporating the isopropanol. In general an evenly spread distribution of Mo powder

was observed on the Si-wafers.

The XRD measurements were performed in Bragg-Brentano geometry on a

Siemens F-ω diffractometer equipped with a curved graphite monochromator in the
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diffracted beam and using Cu-Kα radiation. A divergence slit of 1º and receiving slits

of 0.018 º2θ for series A and of 0.05 º2θ  for both series B and series C were applied,

respectively. During the measurement the specimen was spinning around an axis

perpendicular to its surface. The line profiles of the {110}, {200}, {211}, {220},

{310} and {321} reflections were recorded with as large as possible measurement

ranges taken approximately symmetrically around the peak position of the

corresponding line profile but without overlap of neigbouring measurement ranges.

The step size was chosen such that at least 10 data points across the full width at half

maximum of the Kα1 peak were measured and the counting time per step was selected

such that at least 10000 counts on the line-profile peak were collected. The step sizes

of the {110} and {220} reflection of series A were always chosen equal. The

background of each line profile was removed by subtracting a straight line fitted to the

outermost 5 % of the data points of the line profile on either end of the measurement

range.

The morphology of the undeformed and deformed Mo powder particles was

analysed employing a JEOL 6400F Scanning Electron Microscope.

4. Evaluation of X-Ray Diffraction data

The ball milled powder, in particular after short times of ball milling, can be

conceived as composed of a mixture of undeformed and deformed powder particles

(see Section 5.1 and Ref. 4). Hence, the deconvolution procedures presented in

Section 2 can be applied. The broadened line profiles were deconvolved with the

corresponding lines profiles of the undeformed starting powder as reference line

profiles using normalised Fourier transforms (cf. Eq. (6)). An example of the results

of this procedure for a sample taken from the middle of the ball mill after 0.5 h of ball

milling is presented in Fig. 2a. The Fourier transforms of all reflections shown do not

fall off to zero for large correlation distances L (L is proportional to the Fourier

coefficient n; cf. Ref. 6), but approach, for increasing L, a more or less constant

plateau level (cf. discussion of Eq. (6)). Surprisingly, this plateau level is dependent

on the reflection considered. However, for two orders of the same reflection, {110}

and {220}, the plateau level is approximately the same. For correlation distances

larger than approximately 150 nm the Fourier transforms become very unreliable as a

consequence of superimposed counting statistical errors [4, 7, 8].

The appearance of the plateau levels in Fig. 2a clearly shows the presence of

undeformed starting powder in the ball milled powder after short durations of ball

milling (cf. Section 2.2). The plateau levels found indicate the value of that volume

fraction in the ball milled powder of undeformed starting powder that has the {HKL}
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Fig. 2a. Deconvoluted Fourier transform (modulus) of several line profiles of 0.5 h

ball milled Mo powders of series Am using the normalised deconvolution procedure.

Note the dependence of the plateau levels on the reflections indicated.
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ball milled Mo powders of series Am using the non-normalised deconvolution

procedure.
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lattice planes parallel to the sample surface, i.e. perpendicular to the diffraction vector

employed (see discussion at end of Section 2.2).

Next, the deconvolution procedure is performed again, but now without prior

normalization of the Fourier transforms with respect to the first Fourier coefficient (cf.

Eq. (7)). Then, the plateau levels exhibited by the Fourier transforms of all measured

reflections practically coincide: see Fig. 2b. Consequently, V Vundef
HKL

ref
HKL  does not

depend on {HKL}, as expected (see below Eq. (7) in Section 2.3). Accordingly, the

ratio of undeformed starting powder in the ball milled powder and the reference

powder, which consists of undeformed starting powder only, in this case equals:

V Vundef ref
  = 0.26.

On close inspection of the {110} and {220} Fourier transforms a true

horizontal plateau level is observed, whereas a minor continuous decrease is observed

for the other reflections for the same L-range. This last effect is ascribed to a minor

artefact in the deconvolution procedure, as follows. For the {110} and {220}

reflections the step sizes used during the measurement of the line profiles of the ball

milled powder, the "h"-profile, and of the reference powder, the "g"-profile, were the

same. For the other reflections the step size of the h-profile was always larger than the

step size of the g-profile. This means that the g-part in the h-profile (i.e. the

undeformed powder particles in the ball milled powder; h f g= ∗ ) is also recorded

with a larger step size than corresponding to the g-profile itself, which implies that the

g-part in the h-profile exhibits in fact a slight additional broadening as compared to

the g-profile used in the deconvolution. This small effect reveals itself only at large

values of L that are not studied normally in line-broadening analysis. However, in this

work the large values of L are of importance (to determine α; cf. Section 2).

Recognizing the above, in order to obtain accurate values of V Vundef ref
  , the average

of only the plateau levels of the Fourier transforms of the {110} and {220} reflections

is utilized.

In order to determine the only structurally broadened line profiles of the

deformed part of the ball milled powder, the procedure discussed in Section 2.2

(deconvolution with normalization) or the procedure discussed in Section 2.3

(deconvolution without normalization) can be applied. If, because of different step

sizes used in the measurements of the corresponding line profiles of the ball milled

powder and the reference powder, no truly horizontal plateau level occurs (see above

discussion) the following procedure is adopted. In this case H nundef
HKL ( )  is not exactly

equal to H nref
HKL ( )  and thus the first terms on the right hand side of Eqs. (6) and (7)

become



Analysis of Ball Milled Mo Powder using X-Ray Diffraction 125

α HKL
undef
HKL

ref
HKL

H n

H n

( )

( )
 and 

V

V

H n

H n
undef
HKL

ref
HKL

undef
HKL

ref
HKL

( )

( )
, respectively. (10)

It is proposed to approximate H n H nundef
HKL

ref
HKL( ) ( )  with 1− ⋅const n  and then the

above terms become

α HKL C n− 1  and 
V

V
C n

undef
HKL

ref
HKL − 2 , respectively. (11)

Here, αHKL and C1, or V Vundef
HKL

ref
HKL  and C2, follow directly from the straight lines

fitted to D nnor
HKL ( )  or D nnon nor

HKL
− ( )  in the range where the "plateau level" occurs. Using

this procedure, it followed from the results obtained by deconvolution using non-

normalized transforms (cf. Eq. (7)) that V Vundef
HKL

ref
HKL  as determined by fitting straight

lines as discussed was independent of HKL, justifying the above approximate

treatment (i.e. H n H nundef
HKL

ref
HKL( ) ( )= = ≅0 0 1).

5. Results and Discussion

5.1 Morphology of ball milled powder

The starting powder consisted of more or less spherical particles with a diameter of 1

to 7 µm and flattened sides (see Fig. 3a). The morphology of the Mo powder particles

changed strongly upon ball milling.

After 1 h of ball milling the ball milled powder consisted of a mixture of

powder particles, composed of apparently undeformed starting powder particles and

clearly deformed powder particles (see Fig. 3b). The clearly deformed particles were

thin flakes, approximately 10 to 20 µm wide and a few micrometers thick.

Longer ball milling caused the amount of apparently undeformed Mo powder

to decrease, and the shape of the deformed powder particles to change. An example of

the morphology of Mo powder after 8 h of ball milling is given in Fig. 3c.

Undeformed Mo powder particles were absent in this sample; large agglomerates of

powder particles of approximately 10 to 20 µm diameter and with irregular shapes

were observed; each agglomerate consisted of several cold welded and deformed

original powder particles. Smaller pieces with a size ranging from 1 µm to 10 µm

showed irregularly shaped edges, likely as the result of fracture processes. Some thin

flakes, each flake is probably a single deformed original particle, were visible as well.
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The amount of these flakes decreased with increasing ball milling time; eventually no

flakes were observed anymore and the ball milled powder consisted solely of

agglomerates of multiply cold welded and fractured powder particles.

a)

b)   

Undeformed powder particle          Deformed thin flake
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c)

Fig. 3. Morphology of Mo powder particles before ball milling (a), after 2 h of ball

milling (b) and 8 h of ball milling (c). After 2 h of ball milling apparently undeformed

powder particles and deformed thin flakes were present as indicated by the arrows in

Fig. (b). After 8 h of ball milling no apparantly undeformed powder particles or

deformed thin flake-like particles were observed in Fig. (c); solely irregularly shaped

agglomerates of particles were recognised.

5.2 Volume fraction of undeformed powder particles in ball milled powder

The volume fraction of undeformed powder particles in the ball milled powder, α,

was determined using the procedure outlined in Section 4. The results have been

presented in Fig. 4.

In general α decreased with increasing milling time. After 8 h of ball milling

no undeformed starting powder was found in the ball milled powder. For short milling

times the influence of the location of sampling ("m" or "p"; see Section 3) of the Mo

powder in the ball mill is evident: samples taken from the middle of the bottom plate

showed in general a much smaller α-value than samples taken from the periphery of

the bottom plate. Since the spherical stainless steel ball touches predominantly the Mo

powder located in the middle of the flat WC bottom plate (cf. Fig. 1), it is

understandable that most deformed particles were found at this location. The

deformed Mo powder particles at the periphery of the Mo powder in the ball mill

appear to have been deformed in the centre region of the bottom plate and have then

been moved towards the periphery. The large difference in α between the middle and
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 Fig. 4. Volume fraction α of undeformed powder particles in ball milled Mosamples

as a function of milling time of series Am, Ap, B and C determined using the non-

normalized deconvolution procedure (Section 2.3).

the periphery of the Mo powder in the ball mill suggests that the transport of Mo

powder particles in the ball mill in directions parallel to the surface of the WC bottom

plate (cf. Fig. 1), i.e. perpendicular to the movement of the vibrating cylinder of the

ball mill, is rather slow as compared to the difference in powder sampling time. This

can also explain why, for samples taken from the middle of the bottom plate, α after

1 h of ball milling is larger than after 0.5 h of ball milling (see Fig. 4), as follows. If

powder is taken away from the middle region of the bottom plate then most of the

deformed powder particles present at this location are taken out. This follows directly

from the geometry of the ball mill. Powder particles will be deformed only if they are

located in between the spherical ball and the flat bottom plate. The vibrating ball hits

the bottom plate not only at the centre of the bottom plate, but, since the inner radius

of the cylindrical vessel, Rv, is somewhat larger than the radius of the spherical ball,

Rb, the ball can also move somewhat laterally. Therefore, the ball also hits the bottom

plate at locations other than the one at the bottom plate that is exactly at the centre

line: powder is deformed within a circular region of radius Rv – Rb around the centre

of the bottom plate. Assuming an even distribution of 2 g Mo powder over the surface

of the bottom plate (diameter 20 mm) approximately 0.1 g of Mo powder is located

Series Ap

Series Am

Series B Series C

α

milling time (h)
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within this circular region. This amount is equal to the amount taken out from the

middle of the Mo deposit on the WC bottom plate at every sampling moment (Section

3). It takes time before more or less undeformed powder from the region closely

around the centre has moved towards the centre of the bottom plate. Apparently this

time is of the order of 0.5 h leading to the observation of a fraction of undeformed

starting powder at "m" larger after 1 h than after 0.5 h.

After about 4 h of ball milling the fractions of undeformed powder measured

from samples taken from the middle and from the periphery of the Mo powder in the

ball mill were equal. Therefore, in series B and series C samples were taken only from

the periphery of the deposit of Mo powder in the ball mill (cf. Section 3).

5.3 Deformation texture

The texture of the deformed part of the ball milled powders, is revealed by the

different plateau levels for the Fourier transforms of the various {HKL} reflections

shown in Fig. 2a. The texture has been depicted by the parameter THKL which

represents the ratio of the relative integrated {HKL} intensity of the ball milled

powder and the relative integrated intensity of the reference powder (see Appendix):

T
I d I d

I d I d
HKL tot

HKL
tot

ref
HKL

ref
HKL

HKL

≡ =
∫ ∫
∫ ∫

>2 2

2 2

220

220

0 220θ θ
θ θ

α
α

α
    (12)

with Id∫ 2θ  as the integrated intensity. To eliminate effects of intensity changes due

to differences in mass suspended on the Si-substrates the integrated intensities have

been normalised with respect to the, more or less arbitrarily chosen, {220} reflection.

The evolution of the texture of the deformed part of the ball milled powder is

shown in Figs. 5a-d. At the beginning of the ball milling process a strong preference

for the deformed crystallites occurred to have their {200} and, less strongly, their

{310} lattice planes parallel to the specimen surface. On prolonged ball milling this

texture became weaker and after approximately 8 h of ball milling no distinct texture

was present (THKL ≅ 1).

A strong preference for the {200} type of lattice planes to be parallel to the

surface was reported for cold rolled polycrystalline Mo [9, 10]. Ball milling and cold

rolling imply that material is flattened in between compressing surfaces, i.e. the ball

and the bottom plate in the ball milling equipment used here and both rolls in a rolling

apparatus. Further, the rolling process flattens material while the material is moving in

between the rolls, which causes an additional texture component in the rolling
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direction of the rolled material, whereas the ball milling process is not expected to

induce any in (surface) plane anisotropy.
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Fig. 5. Deformation texture parameter THKL as a function of ΣH2 = H2+K2+L2 for

ball milled Mo powders of series Am, Ap, B and C determined from the integrated

intensities of the line profiles of the ball milled powder and of the reference powder

(see Eq. 12).
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The evolution of the texture can be explained as follows. In the initial stage of

ball milling, most particles that deformed were flattened into flakes (cf. Section 5.1)

which after being suspended in isopropanol (in the procedure for specimen

preparation for XRD analysis; cf. Section 3) position onto the Si-substrate with a

strong tendency for their flat sides to be parallel to the surface of the Si-substrate (cf.

Fig. 3b). Upon prolonged ball milling the shape of the deformed powder particles

changed due to the multiple cold welding and fracture processes that took place. Then

large, irregularly shaped agglomerates of particles (cf. Fig. 3c) occurred and no

preferred positioning on the Si-substrate of such particles is expected to take place

during preparation of the XRD specimen. This leads to disappearance of the texture,

as observed through THKL, upon continued ball milling. A similar texture behaviour

was observed upon ball milling Ni3Al powder [11].

Since the Mo powder particles first deformed into flake-like particles and then,

on prolonged ball milling, into irregularly shaped agglomerates of particles, it is

understandable that the amount of undeformed, starting powder dropped to zero

before the texture (related to the amount of flake-like particles) disappeared (cf. Figs.

4 and 5).

5.4 Evolution of structural imperfection

5.4.1 Integral breadth as function of ball milling time

The diffraction-line profiles of the Mo powder particles become broadened

excessively during the ball milling process. As an example the {220} line profiles of

the undeformed starting powder (0 h), also used as reference powder (see Section 4),

and a selection of {220} line profiles of deformed powders are shown in Fig. 6 (after

removal of the background). For relatively short durations of ball milling (0 to 4 h) the

Kα1 and Kα2 peaks are clearly resolved whereas for longer durations of ball milling

no separate Kα1 and Kα2 peaks can be observed.

Since the broadenings of the reflections of the undeformed reference powder

are very small and comparable with the broadenings of a specially made Si-standard

specimen [12], it can be assumed that the line profiles of the reference powder

represent the true instrumental line profiles. Consequently, the Fourier transforms of

the line profiles of the deformed part of the powder, as obtained by application of a

devonvolution procedure, as described in Section 2.2 or 2.3, contain broadening due

to structural causes only. These structural broadenings can be characterized by the

integral breadth (= integrated intensity of the only structurally broadened line profile

divided by its peak height), which, assuming the peak maximum occurs at the origin
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chosen in reciprocal space, is equal to the reciprocal value of the area under the

corresponding normalized Fourier transforms [5].
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Fig. 6. X-ray diffraction line profiles of {220} Mo reflection of undeformed starting

powder (0 h), also used as reference powder, and ball milled powder for increasing

times of ball milling: 2, 4, 8, 32 h.

The integral breadths of all only structurally broadened line profiles are

presented versus the reciprocal of the distance between the corresponding diffracting

planes, 1/dHKL, in Figs. 7a-d. In general for a certain reflection the integral breadth

increased with ball milling time indicating a more severe lattice deformation if ball

milling time increases. The change of the broadenings for series Am and Ap with ball

milling time deviates somewhat from the general trend and is comparable with the

behaviour of α for these series with ball milling time: compare Figs. 7a, b with Fig. 4.

Therefore, the same type of reasoning holds to understand the behaviour of the

broadening of series Am and Ap with ball milling time (see Section 5.2).

5.4.2 Integral breadth as function of diffraction-vector length

Now consider the results of series B and series C in Figs. 7c and 7d, respectively.

Ignoring the first period of ball milling, the line broadening of each reflection

increased with approximately the same amount if the ball milling time was doubled.

This holds for series B and for series C, and thus up to at least 32 h of ball milling.

º2θ
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However, the broadenings of the line profiles of series B are systematicly larger than

those of series C, which is seen best comparing the results of both series obtained after

8 h and 16 h of ball milling. This is ascribed to the difference in milling intensity (see

Section 3).
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Fig. 7. Integral breadths βtot due to structurally broadening of deformed powder

particles versus 1/dHKL of all Mo reflections measured of series Am, Ap, B and C after

removal of broadening due to undeformed powder particles present and due to the

measurement instrument through application of the deconvolution procedures of

Sections 2.2 and 2.3.
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Structural line broadening is usually conceived as the convolution of

broadening due to (i) finite size of the diffracting crystallites (size broadening) and (ii)

local variations in interplanar distance, as due to the presence of lattice defects

inducing strain fields (strain broadening) [6]. If the line profile width is characterized

by the integral breadth β, then in case of pure size broadening β ≡ βS = K/D (for βS in

reciprocal space) with D the mean crystallite size and K a constant close to unity [6],

and in case of pure strain broadening β β≡ =D
HKLe d2~ /  (for βD in reciprocal space),

with ~e  a measure for strain due to the strain fields induced by the lattice distortions

[13] and dHKL as the interplaner distance of lattice planes of the type HKL.

If both types of broadening occur simultaneously, separation of "size" and

"strain" integral breadth components can be performed on the basis of the dependence

of the total integral breadth βtot on the length of the diffraction vector characterized by

1/dHKL using knowledge of the shape of the corresponding component line profiles.

For example, if both component line profiles are assumed to be Cauchy, then the total

integral breadth of the measured line profile, βtot, equals β β βtot = +S D , whereas if

both profiles are assumed to be Gaussian, β β βtot
2 2 2= +S D . Then plotting of βtot vs

1/dHKL in case of Cauchy component line profiles or of βtot
2  vs 1/(dHKL)2 in case of

Gaussian component line profiles yields straight lines with slopes related to ~e  and

intercepts cut from the ordinate related to D.

An overall increase of β as a function of 1/dHKL occurs for all series shown in

Fig. 7. However, systematic deviations of the overall trend occur for specific

reflections. For example after short durations of ball milling (0.5 - 4 h) the integral

breadths of the {200} and {310} reflections are relatively large. One might suggest

that such deviations could be explained by intrinsic anisotropy of the elastic constants

of the material considered: a reflection associated with a relatively "weak"

crystallographic direction would broaden relatively strongly [14]. However, the

anisotropy of the elastic constants of Mo cannot explain the relatively large integral

breadths of the {200} and {310} reflections, since these reflections correspond to

relatively stiff crystallographic directions [15].

To avoid effects on the line-profile analysis of these HKL dependent

deviations, two orders of the same reflection (i.e. {110} and {220}) are used to

separate the contributions due to size and strain. Results obtained assuming Cauchy

shaped component (size and strain) line profiles and K = 1 are shown in Fig. 8. The

crystallite sizes for series Am and Ap are of the order of 100 - 300 nm after ball milling

for 0.5 h to 4 h11. Continued ball milling led to a strong decrease of crystallite sizes to

                                                          
11 The result of series Am after 0.5 h of ball milling has not been shown because the broadening did not
comply with the assumed type of size-strain separation: i.e. a negative part cut from the ordinate
occurred in the plot of βtot vs 1/dHKL.
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Fig. 8. Results of line-profile analysis assuming Cauchy shaped component (size and

strain) line profiles performed on the integral breadth values of the {110} and {220}

Mo reflections of series Am, Ap, B and C depicted in Fig. 7. Particle sizes D obtained

from the intercept of the abscissa are presented in (a) (note the logarithmic scale) and

corresponding microstrain values ~e obtained from the slopes in (b).
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20 nm after 32 h of ball milling (series C). This decrease of crystallite size is

accompanied with an increase of the average microstrain to about 0.4 %. Clearly, both

sources of line broadening contribute significantly to the total broadening (see also

Fig. 7). Assuming Gaussian shaped component line profiles led to similar results,

although the average particle size is somewhat smaller and the average strain is

somewhat larger: after 32 h of ball milling a crystallite size of approximately 15 nm

and an average strain of 0.6 % were obtained.

The results of series Am and Ap show a relatively large scatter which is ascribed

to the relatively large sensitivity of the relatively large values of D (in these cases) for

small deviations of the intercept of the ordinate caused by small errors in β and to the

effects of sampling of the powder as discussed in Section 5.2. Note also the small but

systematic difference between the results of series B and series C due to the difference

in milling intensities of these series (see Section 3).

It has been observed [14, 16 - 20] that upon ball milling of powders the

crystallite size would decrease until a certain saturation level is reached. Such a level

could result as a steady state for the competition between grain refinement, due to

plastic deformation, and grain growth/relaxation processes, such as recovery and

recrystallisation [14, 20]. A saturation level for the average microstrain has sometimes

been observed; in other cases the average microstrain reaches a maximum after some

ball milling time but decreases upon further ball milling [14, 16 - 20]. From this work

it seems probable (see Fig. 8) that on prolonged ball milling, i.e. longer than 32 h, the

crystallite size may decrease further and the average microstrain may still increase.

Extrapolation of the results obtained suggest a minimum crystallite size of the order of

10 nm and a maximum average microstrain of the order of 0.4 to 0.6 %. Such values

have been found for other ball milled bcc materials [14, 17 - 20].

5.5 Interpretation of microstrain; determination of dislocation density

It will be shown here that the structural broadening observed can be ascribed to the

presence of deformation induced dislocations. To this end line-profile simulation and

matching has been performed using a new Monte-Carlo-type approach to line-

broadening simulation.

Within a single crystalline sphere of radius R a number of "infinitely long",

straight edge and/or screw dislocations, corresponding to a given dislocation density ρ
is distributed at random in accordance with the operating glide systems of the

crystalline material considered [21]. Here, only the strain-broadened parts of the

diffraction-line profiles are computed according to the kinematical diffraction theory

as follows. A number of pairs of points is selected at random, such that (i) for each
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pair the vector connecting both points has length L and is parallel to the diffraction

vector considered (L = correlation distance; see Section 4) and (ii) the points of each

pair are located within the sphere of radius R considered. The contributions of all pairs

of points to the real and imaginary "strain" Fourier coefficients (see Eqs. (13) and (15)

in Ref. 13) are calculated taking into account the displacement fields of all

dislocations distributed in the crystal considered. The calculated "strain" Fourier

coefficients are averaged over the total number of pairs. The process of distributing

dislocations on the glide planes and selecting pairs of points is repeated several times

for the same value of L until the average values of the corresponding "strain" Fourier

coefficients become independent of continuation of this procedure. Subsequently, this

calculation procedure is carried out for increasing values of L, until for large L the

"strain" Fourier coefficients become negligibly small. The strain broadened line

profiles thus calculated were characterized by their integral breadths.

The deformation of a body centered cubic crystal (Mo is bcc) can take place

through slip of dislocations along three different glide planes: {110}, {211} and

{321}, with 1
2 111a〈 〉  as the possible Burgers vectors [22]. Often the contribution of

the {321} glide planes is small and can be neglected [9, 10]. Here, it is assumed that

dislocations are present on the {110} and {211} glide planes only.

As an example, the simulation method was carried out for Mo crystals

containing either screw dislocations or edge dislocations or both types of dislocations,

with in all cases ρ = 1014 m-2. Other parameters were: R = 1 µm, 1000 pairs of points

per correlation distance L and 100 repetitions per correlation distance. The known

descriptions for the displacement fields of edge and screw dislocations in an elasticly

isotropic material were adopted [22] with Poisson's ratio, ν = 0.293, and with the

lattice constant of Mo, aMo = 0.31472 nm. In case of a mixture of edge and screw

dislocations the probability of distributing an edge or a screw dislocation is equal.

Results are shown in Fig. 9 for the same {HKL} reflections as measured

experimentally.

Obviously, the integral breadths of the simulated strain broadened line profiles,

show an overal increase upon increasing 1/dHKL. Because size broadening is absent

(see above) the lines intersecting the points representing the integral breadths of {110}

and {220}, respectively, should go through the origin, as they do. However,

systematic deviations from the overall trend occur in case of presence of only screw

dislocations, whereas in case of presence of only edge dislocations a more or less

linear dependence on 1/dHKL is observed. In case of a mixture of both types of

dislocations the integral breadth shows an intermediate behaviour.
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Fig. 9. Integral breadths of simulated strain broadened line profiles plotted vs 1/dHKL

using either edge dislocations, screw dislocations or a mixture of both types of

dislocations with ρ = 1014 (m-2) and R = 1 µm. Dislocations are distributed at

random compatible with the {110} and {211} glides planes of Mo and with
1
2 111aMo 〈 〉  as the Burgers vector.

The displacement fields used in the calculations for edge and screw

dislocations pertain to elastically isotropic material and therefore the {HKL}-

dependence of the integral breadth in Fig. 9 in the case of only screw dislocations is

solely caused by the crystallographic direction dependence of the displacement and

strain fields of the dislocations with respect to the diffraction vectors considered.

Thus, possible anisotropy of the elastic constants of the Mo crystal does not play a

role here. Corresponding {HKL} dependence has been considered earlier using a

different approach [23 -25].

Comparing the simulated integral breadth dependence on 1/dHKL (Fig. 9) with

the experimentally obtained results after short durations of ball milling (cf. Figs. 7a

and b: 1, 2 and 4 h) similar observations are made: e.g. in both cases the integral

breadths of the {200} and {310} are relatively large. This suggests strongly that the

presence of dislocations is the cause of the experimentally observed dependence of β
on 1/dHKL. After longer times of ball milling the integral breadths of the

experimentally measured {200} and {310} reflections become relatively less
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pronounced, which could be interpreted according to Fig. 9 as that the fraction of

screw dislocations becomes smaller and, consequently, the fraction of edge

dislocations becomes larger.
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Fig. 10. Microstrain estimate ~e  versus square root of dislocation density ρ obtained

from line-profile analysis assuming Cauchy shaped line profiles of simulated strain

broadened {110} and {220} Mo reflections. Dislocations are either of edge type,

screw type or a mixture of both types and are distributed at random compatible with

the {110} and {211} glide planes of Mo, with 1
2 111aMo 〈 〉  as the Burgers vector and

with R ρ  = 10.

The simulations [21] show that β ρD  is practically a univocal function of

R ρ . Variations in the value taken for R ρ  lead to changes in βD at constant ρ of,

say, 50 % for 1 10≤ ≤R ρ   and < 10 % for 10 25≤ ≤R ρ . To arrive at an estimate

for the dislocation density in the deformed part of the ball milled powders, for the

present simulations R ρ  has been set equal to 10. The strain-broadened diffraction-

line profiles were calculated for increasing dislocation densities with either pure edge,

pure screw or a mixture of edge and screw dislocations. Then, corresponding average

microstrain values ~e  were determined assuming Cauchy or Gaussian shaped

component lines profiles using the integral breadths of the {110} and {220} only.

Results are presented in Fig. 10 for the case of Cauchy shaped component line

ρ ( )m−1

~e
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profiles. A linear relation between ~e  and the square root of the dislocation density is

observed. For the same dislocation density, edge dislocations cause a somewhat larger

value of ~e  than screw dislocations. Estimates of dislocation densities in the deformed

part of the ball milled powder were obtained from the experimental average

microstrain values ~e  (Fig. 8b) and the ~e -ρ relation shown in Fig. 10. Results are

presented in Fig. 11 applying a mixture of edge and screw dislocations for all series.

The influence of the type of dislocations on the dislocation densities determined is

relatively small. It follows that during the ball milling process the dislocation density

increases to values of about 3 × 1015 m-2 after 32 h of ball milling in case of Cauchy

component line profiles (to 7 × 1015 m-2 in case of Gaussian component line profiles):

these values correspond to a severely cold deformed material.
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Fig. 11. Estimates of dislocation densities ρ of series Am, Ap, B and C using ~e (from

Fig. 8b), as obtained from line-profile analysis assuming Cauchy shaped component

(size and strain) line profiles performed on the integral breadth values of {110} and

{220} Mo reflections (see Fig. 7), and ~e (from Fig. 10), as obtained from the same

analysis performed on integral breadth values obtained from simulated {110} and

{220} strain broadened Mo reflections.
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6. Conclusions

– During ball milling of Mo powder in a low-energy ball mill several stages of

deformation can be identified. In a first stage the generally soft, powder particles are

flattened due to action of compressive forces. The ball milled powder consists of a

mixture of undeformed powder particles and flake-like, deformed powder particles.

The flakes have more or less flat faces preferably parallel to {100} planes of the

crystal lattice. Continued ball milling causes the amount of flake-like deformed

powder particles to decrease, and simultaneously more and more irregularly shaped

agglomerates of particles occur, as a result of multiple cold welding and fracturing of

powder particles.

– X-ray diffraction methods developed in this study allow quantitative determination

of the (still) undeformed part of the ball milled powder from the Fourier transform of

reflections from the ball milled powder obtained after deconvolution using

corresponding reflections from the initial powder. This analysis is possible also if

texture is present in the specimen prepared for diffraction analysis. Such texture can

occur due to the presence of the flake-like particles that tend to orient their flat faces,

preferably parallel to {100} of the crystal lattice of Mo, parallel to the surface of the

diffraction specimen, in dependence on the procedure used for preparation of the

specimen for diffraction analysis.

– Analysis of the ball milling induced structural imperfections from the occurring

diffraction-line broadening revealed a drastic decrease of the size of the diffracting

crystallites upon ball milling down to 10 - 20 nm, i.e. values much smaller than the

size of the irregularly shaped agglomerates of particles observed at this advanced state

of ball milling. Simultaneously the internal average microstrain increased up to 0.4 -

0.6 %.

– The dominant source of structural line broadening are dislocations generated by ball

milling: line-profile simulation and matching revealed a dependence of structural line

broadening on the length of the diffraction vector as observed experimentally. The

nature of the dislocations becomes less screw-like and more edge-like upon continued

ball milling. In an advanced stage of ball milling the dislocation density becomes as

large as 3 - 7 × 1015 m-2.
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Appendix
Relation between THKL and ααHKL

After short times of ball milling the diffracting volume pertaining to the {HKL}

reflection consists of a mixture of undeformed powder particles of total volume Vundef
HKL

and deformed powder particles of total volume Vdef
HKL . The volume weighted intensity

distribution of the line profile of the {HKL} reflection, I tot
HKL (2 )θ , is described by Eq.

(2). The integrated intensity of this reflection, I dtot
HKL 2θ∫ , can be expressed as

I d V V I dtot
HKL

undef
HKL

def
HKL HKL2 2θ θ= +∫ ∫( ) (A. 1)

with I dHKL 2θ∫  the integrated intensity of the line profile of the {HKL} reflection per

unit of volume. It has been assumed that I dHKL 2θ∫  is independent of the state of

deformation of the powder particles, i.e. I d I d I dundef
HKL

def
HKL HKL2 2 2θ θ θ= =∫ ∫ ∫ .

If the integrated intensity of an arbitrary {HKL} reflection is divided by that of

the {220} reflection it follows, using Eq. (5), that

I d
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V V

V V
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∫
∫
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2

2HKL
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HKL
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HKLV

V

I d
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. (A. 2)

If the undeformed powder of the ball milled powder is equal to the reference

powder (the same morphology, microstructure and texture; implying the same

procedure for (diffraction) specimen preparation for both specimens), then, according

to Eq. (8)

V

V

V

V
undef
HKL

undef

ref
HKL

ref
220 220= (A. 3)

and Eq. (A. 2) can be written as
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Since V I dref
HKL HKL 2θ∫   represents the integrated intensity of the {HKL}

reflection of the reference specimen, V I d I dref
HKL HKL

ref
HKL2 2θ θ∫ ∫= , Eq. (A. 4)

becomes

I d

I d

I d
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= . (A. 5)

Recognizing the parameter THKL from Eq. (12) it follows from Eq. (A. 5)
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Summary

Lattice imperfections, such as dislocations and misfitting particles, shift and/or

broaden X-ray diffraction (XRD) line profiles. Most of the present analysis methods

of the shift and broadening of XRD line profiles do not provide the characteristics of

lattice imperfections. The main part of this thesis deals with a new approach to the

analysis of broadened and shifted XRD line profiles that does not have the limitations

of the present analysis methods. The approach is based on micromechanical modelling

of the microstructure of the material. A small volume which is representative of the

microstructure of the material is used to model and calculate the materials behaviour

on a local scale incorporating the (strain fields of the) lattice imperfections.

Subsequently, the behaviour of this representative element can be used to calculate the

overall materials properties. X-ray diffraction-line profiles are calculated from such

model materials and are compared with the measured ones. By adjusting the

parameters of the micromechanical model, the calculated line profiles can be matched

to the experimental ones. In this way characteristics of the microstructure of the

experimental material can be determined and subsequently overall materials properties

can be predicted. Hence, a direct link between XRD line-profiles characteristics and

materials properties is conceivable.

The new diffraction-line profile calculation approach is developed in chapters

2 and 3 for a two-dimensional model composite material containing a periodic

distribution of misfitting particles. The shifts and broadenings of line profiles in

absence of particle-matrix misfit are studied in chapter 2. The line-profile broadenings

of matrix reflections are caused by finite distances in the matrix between the (non-

diffracting) particles ("size" broadening). Relations between the "size" broadening of

the matrix line profiles and model parameters, such as the particle fraction, the particle

size and the degree of particle clustering, are established. If a misfit between particles

and matrix exists the matrix line profiles are also broadened due to the strain field

induced by the particles in the matrix ("strain" broadening). A simple method is

proposed to separate the "size" and "strain" contributions to the total broadening.

The line-profile shifts and broadenings due to “strain” alone are analyzed in

two steps in chapter 3. First, the relations between model parameters, such as the

particle size, the particle fraction, the particle-matrix misfit and the degree of particle

clustering, and the mean strain of the matrix and root mean square strain of the matrix

are studied. Due to the ordering of the particles in the composite material the strain

field in the matrix is direction dependent which is reflected in the root mean square

strain of the matrix. Then, the relations between the values that characterize the matrix
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strain and the shift and width of the calculated line profiles are investigated. The mean

matrix strain, calculated on the basis of the shift of the line-profile centroid of the

simulated XRD line profile, shows approximately equal behaviour for all values of the

model parameters as the mean strain calculated from the strain field in the matrix. The

broadening of the simulated XRD line profiles reflects the direction dependence of the

strain field in the matrix. This leads to the observation that for all values of the model

parameters the line-profile broadenings are proportional to the product of the centroids

of the line profiles and the root mean square strains in the specific crystallographic

directions (as usually assumed in practice). Thus for the particle-matrix systems

studied here the influence of the various model parameters on the line-profile position

and width can be explained directly from the influence of these model parameters on

the mean strain and root mean square strain of the matrix material.

Verification of the results of the novel simulation approach can be

accomplished, for example, by studying the same material employing a different

experimental technique, such as Transmission Electron Microscopy. The study of

particle/matrix systems using this technique is the topic of chapter 4. The strain field

in the matrix due to misfitting particles causes, under certain diffraction conditions,

diffraction contrast lobes in bright field and dark field images to appear. Information

on the particle-matrix misfit and/or on the particle dimensions can be obtained by an

analysis of the extent of the contrast lobes. The classical analysis is unreliable for

specimen foils that contain a high number density of misfitting particles and/or that

are relatively thin (smaller than five times the extinction distance). An alternative

method is proposed here that does not have the limitations of the classical method.

The extent of the contrast lobes is characterized by the distance of the maximum or

minimum intensity of the contrast lobes in bright field and dark field to the center of

the misfitting particle. For the interpretation of the observed contrast lobes a model

system, consisting of a single disc-shaped misfitting particle placed centrally in a thin

specimen, is considered. The contrast lobes in bright and dark field images are

calculated as a function of, in particular, the particle radius, the foil thickness and the

particle thickness. Simultaneous fitting of calculated bright and dark field diffraction

contrast images to the experimental ones leads to determination of the particle misfit

and the local thickness of the specimen foil. The method is illustrated for a nitrided

Fe-2 at. % V alloy with small disc-shaped VN precipitates and leads to a consistent

interpretation in terms of particle size and misfit upon precipitation. The foil thickness

values determined by diffraction contrast analysis agree well with data obtained from

an independent thickness measurement technique.
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In chapters 5 and 6 attention is paid to powder particles that have been

deformed in a ball milling device. Ball milling provides a route for the preparation of

non-equilibrium material that may possess unusual chemical and physical properties.

In this work the ball milling process in a low energy ball mill is investigated as a

function of milling time and using Mo powder as a model material. After relatively

short times of ball milling still undeformed Mo powder particles are present in the

type of ball mill used. A method is developed, on the basis of line-profile

deconvolution, that enables the determination of the volume fraction of undeformed

powder particles and the (Fourier transform of the) line profile of the deformed

particles. The accuracy of these results are largely determined by the effect of counting

statistical intensity variations. A region in Fourier space can be indicated for which the

determination of the volume fraction of undeformed Mo powder is optimal.

During the deformation of the Mo powder particles several stages can be

identified. First, the particles are flattened due to compressive forces of the bouncing

ball in the mill. These flat particles exhibit a deformation texture which is comparable

with that of rolled polycrystalline Mo. On prolonged ball milling all powder particles

are eventually deformed and agglomerates of particles are formed without exhibiting a

specific shape. The crystallite size decreases towards 10 - 20 nm, the apparent texture

disappears and internal strains are built up to microstrain levels of the order of 0.4 -

0.6 %.

From the magnitude of the microstrains an estimate of the dislocation density

can be calculated using a simple three dimensional model of the distribution of

dislocations in deformed Mo powder particles. It assumes that straight edge and/or

screw dislocations are distributed at random on the {110} and {211} glide planes of

Mo with 〈 〉111  as possible Burgers vector directions. The X-ray diffraction line

profiles are obtained using a Monte-Carlo type of line-profile calculation method. A

comparison of the integral breadths of several simulated and experimental line profiles

clearly indicates the presence of dislocations in the ball milled Mo powder particles.

Then the dislocation density is estimated to become as large as 3 7 1015− ⋅  m-2 in an

advanced state of ball milling, which indicates a severely cold deformed material.
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Samenvatting

Roosterfouten, zoals dislocaties en mispassende deeltjes, verschuiven en/of verbreden

röntgendiffractielijnprofielen. De meeste lijnprofiel-analysemethoden zijn niet in staat

om uit de gemeten lijnprofielverschuiving en -verbreding roosterfouten goed te

karakteriseren. Dit is jammer, omdat roosterfouten een belangrijke rol spelen bij het

gedrag en de eigenschappen van kristallijne materialen. Het grootste gedeelte van dit

proefschrift gaat daarom over een nieuwe methode voor de analyse van verschoven en

verbrede lijnprofielen. De methode is gebaseerd op het berekenen van lijnprofielen op

basis van een micromechanisch model van het gemeten materiaal. Dit model

beschrijft het gedrag van dit materiaal in een representatief volume-element waarin de

beteffende roosterfouten en de, met hun aanwezigheid samenhangende, rekvelden

worden opgenomen. Hieruit kunnen bijvoorbeeld ook de overall

materiaaleigenschappen berekend worden. Van dit modelmateriaal worden

lijnprofielen berekend en deze kunnen vergeleken worden met de gemeten

lijnprofielen. Door nu de parameters van het modelmateriaal te variëren, kunnen de

berekende lijnprofielen worden gefit aan de gemeten lijnprofielen. Op deze manier

kan informatie worden verkregen over de microstructuur van het gemeten materiaal.

Dus, een directe relatie tussen karakteristieken van röntgendiffractielijnprofielen en

materiaaleigenschappen is denkbaar.

De nieuwe lijnprofielberekeningsmethode wordt beschreven in hoofdstukken 2

en 3 voor een tweedimensionaal model-composietmateriaal dat een periodieke

verdeling van mispassende deeltjes bevat. De verschuiving en verbreding van lijn-

profielen in afwezigheid van mispassing tussen deeltjes en matrix worden in hoofd-

stuk 2 bestudeerd. De lijnprofielverbreding van matrixreflecties wordt veroorzaakt

door eindige afstanden tussen de (niet-diffracterende) deeltjes ("size"-verbreding).

Relaties zijn bepaald tussen deze "size"-verbreding van de matrix lijnprofielen en

modelparameters, zoals de deeltjesfractie, de deeltjesgrootte en de mate van deeltjes-

clustering. Als er een mispasing tussen deeltjes en matrix bestaat, worden de lijn-

profielen van de matrixreflecties ook verbreed tengevolge van het rekveld in de matrix

veroorzaakt door het mispassende deeltje ("strain"-verbreding). Een eenvoudige

methode is voorgesteld om de "size"- en "strain"-bijdragen aan de totale verbreding

van elkaar te scheiden.

De lijnprofielverschuiving en -verbreding tengevolge van "strain" zijn in twee stappen

geanalyseerd in hoofdstuk 3. Eerst zijn de relaties tussen modelparameters, zoals de

deeltjesgrootte, deeltjesfractie, mispassing tussen deeltjes en matrix en de mate van

clustering van de deeltjes, en de gemiddelde rek en het gemiddelde van het ordening
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van de deeltjes in het composietmateriaal is het rekveld in de matrix

richtingsafhankelijk, hetgeen in dit geval alleen tot uiting komt in het gemiddelde

kwadraat van de rek in de matrix. Vervolgens zijn de relaties tussen de karakteristieke

matrixrekwaarden en de verschuiving en verbreding van de berekende lijnprofielen

onderzocht. De gemiddelde rek, berekend op basis van de verschuiving van de

centroïde van het lijnprofiel, vertoont een ongeveer gelijk gedrag voor alle

onderzochte waarden van de modelparameters als de gemiddelde rek berekend uit het

rekveld in de matrix. De verbreding van het berekende lijnprofiel weerspiegelt de

richtingsafhankelijkheid van het rekveld in de matrix. Dit leidt tot de waarneming dat

voor alle waarden van de modelparameters de lijnprofielverbreding evenredig is aan

het produkt van de lijnprofielcentroïde en het gemiddelde kwadraat van de rek in de

specifieke kristallografische richting (zoals vaak aangenomen in de praktijk). Dus

voor het hier bestudeerde deeltjes/matrix-systeem is de invloed van de verschillende

modelparameters op de lijnprofielpositie en -verbreding direct te verklaren vanuit hun

invloed op de gemiddelde rek en het gemiddelde kwadraat van de rek in de matrix.

Verificatie van de resultaten van de nieuwe simulatiemethode is mogelijk door

hetzelfde materiaal met een andere experimentele techniek te bestuderen, zoals TEM.

De studie van deeltje/matrix-systemen met behulp van deze techniek is het onderwerp

van hoofdstuk 4. De rekvelden in de matrix, tengevolge van de mispassende deeltjes,

veroorzaken onder zekere (diffractie) condities, zogenaamde diffractiecontrastlobben

in helderveld- en donkerveldopnamen. Informatie over de deeltjes/matrix-mispassing

en/of de deeltjesafmetingen kan worden verkregen door de uitgebreidheid van de

lobben te bestuderen. De klassieke methode bleek niet betrouwbaar voor

preparaatfolies met een hoge deeltjesdichtheid en/of kleine foliedikte. Vandaar dat een

alternatieve methode is voorgesteld. De uitgebreidheid van de contrastlobben is

gekarakteriseerd door de afstand tussen de maximum of minimum intensiteit van de

contrastlobben in helderveld en donkerveld tot het midden van de mispassende

deeltjes. Om de contrastlobben te kunnen interpreteren is een modelsysteem gebruikt,

bestaande uit een schijfvormig, mispassend deeltje in het midden van een dun

preparaatfolie. De contrastlobben in helder- en donkerveld zijn berekend als functie

van, met name, de deeltjesstraal, de foliedikte en de deeltjesdikte. Door nu tegelijker-

tijd de berekende helderveld- en donkerveldbeelden te fitten op de experimentele

beelden kunnen de deeltjesmispassing en de locale preparaatfoliedikte bepaald

worden. De methode is geïllustreerd aan de hand van een genitreerde Fe-2 at.% V

legering met kleine schijfvormige VN-precipitaten en leidt tot een consistente

interpretatie van de deeltjesgrootte en deeltjes/matrix-mispassing. Bovendien komen
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de op deze wijze bepaalde foliediktes goed overeen met waarden die met een andere

foliediktemeettechniek zijn bepaald.

In hoofdstukken 5 en 6 is aandacht besteed aan poederdeeltjes die zijn

vervormd in een kogelmolen. Kogelmalen maakt het mogelijk niet-evenwichts-

materialen te maken, die buitengewone chemische of fysische eigenschappen bezitten.

In dit werk is het kogelmaalproces in een lage-energie kogelmolen bestudeerd als

functie van de maalduur en met Mo-poeder als modelmateriaal. Na relatief korte

maalduren blijkt er in de door ons gebruikte kogelmolen nog onvervormd Mo-poeder

aanwezig te zijn. Er is een methode ontwikkeld, op basis van lijnprofieldeconvolutie,

om de volumefractie onvervormd poederdeeltjes en de Fouriertransform van het

lijnprofiel van de gedeformeerde deeltjes te bepalen. De nauwkeurigheid van de

resultaten blijkt sterk afhankelijk van de invloed van telstatistiek. In de Fourierruimte

kan een gebied aangegeven worden waar de volumefractie onvervormd Mo-poeder

optimaal bepaald kan worden.

Het deformeren van Mo-poeder verloopt in verschillende stadia. Eerst worden

de deeltjes geplet tengevolge van de samendrukkende krachten van de stuiterende bal

in de kogelmolen. Deze geplette deeltjes vertonen een deformatietextuur die vergelijk-

baar is met die van gewalst polykristallijn Mo. Na langduriger malen worden

uiteindelijk alle Mo-deeltjes vervormd en ontstaan agglomeraten van deeltjes zonder

voorkeursvorm. De kristallietgrootte neemt af tot 10 - 20 nm, de textuur verdwijnt en

microrekken ontstaan met een grootte tot 0.4 - 0.6 %.

Een schatting van de dislocatiedichtheid op basis van de microrekwaarden kan

worden gemaakt met een eenvoudig driedimensionaal model van de distributie van

dislocaties in gedeformeerde Mo-poederdeeltjes. Aangenomen wordt dat rechte rand

en/of schroef-dislocaties random verdeeld zijn op de {110} en {211} glijvlakken van

Mo met 〈 〉111  als mogelijke richtingen van de Burgersvector. De

röntgendiffractielijnprofielen worden berekend met een Monte-Carlo-type lijnprofiel-

berekeningsmethode. Een vergelijking van de integrale breedte van verschillende

gesimuleerde en experimentele lijnprofielen duidt duidelijk op de aanwezigheid van

dislocaties in de gekogelmaalde Mo-poederdeeltjes. De dislocatiedichtheid wordt

geschat op 3 7 1015− ⋅  m-2 in een vergevorderd stadium van kogelmalen, hetgeen duidt

op een behoorlijk zwaar koudvervormd materiaal.
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